
 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 1

MICAS-X User Manual

version 3.3.0

1 Table of Contents

1 Table of Contents ... 1

2 Introduction ... 7

3 MICAS-X Overview.. 9

3.1 Program Structure .. 9

3.2 Components ... 10

3.3 Channels .. 12

3.4 Acquisition ... 12

3.5 Data Types ... 13

3.6 Channel Lists .. 14

3.7 File Storage .. 15

3.8 History Data ... 16

3.9 Commands ... 17

3.10 Program Versions ... 17

3.11 MICAS-X-RT ... 19

3.12 Controlling one MICAS-X from another MICAS-X 20

3.13 MICAS Metrics Program .. 22

4 Notes on Installation .. 22

5 Locating Files and Directories on a Hard Drive .. 23

5.1 Directories Used with the Executable Version of MICAS-X 23

5.2 Directories Used with MICAS-X in Source Code 24

5.3 Directories Used with MICAS-X-RT ... 25

5.4 File Types Used with MICAS-X.. 25

6 Configuration File Usage ... 26

6.1 Shortcuts for MICAS-X.exe Executable .. 27

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 2

6.2 Shortcuts for MICAS-X.vi in Source Code .. 28

6.3 Configuration Files for MICAS-X-RT .. 28

7 Configuration Editor .. 29

7.1 Using the Configuration Editor ... 29

7.2 Configuration File CRC .. 31

7.3 Backup Configuration File .. 32

7.4 Modules ... 32

7.4.1 MICAS.. 32

7.4.1.1 MICAS-X for Windows ... 32

7.4.1.2 MICAS-X-RT ... 36

7.4.2 Acquisition ... 37

7.4.3 Channel Lists .. 39

7.4.4 File Writer .. 40

7.4.5 Control Tab .. 43

7.4.6 Sequences ... 45

7.4.7 Sequence Sets .. 47

7.4.8 Scripts ... 48

7.4.9 Triggers ... 51

7.4.10 Constants ... 56

7.4.11 Globals ... 56

7.4.12 Enumerated Lists (Enum Lists) .. 57

7.4.13 Commands Menu .. 57

7.4.14 Security ... 58

7.4.15 Advanced ... 59

7.5 Drivers ... 60

7.5.1 Common Driver Parameters ... 60

7.5.2 Array.vit ... 61

7.5.3 Averager.vit .. 62

7.5.4 Calculations.vit ... 63

7.5.5 Document .. 64

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 3

7.5.6 Equations.vit .. 64

7.5.7 Manual.vi ... 67

7.5.8 MICM.vit .. 68

7.5.9 MOSDS.vit .. 68

7.5.10 NIDaqAD.vit ... 69

7.5.11 Sequences.vi .. 72

7.5.12 Timers.vi .. 72

7.5.13 Triggers.vi .. 73

7.5.14 Variables.vit ... 74

7.6 Drivers Available for Additional Cost ... 74

7.6.1 2D Array.vit .. 74

7.6.2 Agilis.vit ... 76

7.6.3 Airmar.vit ... 76

7.6.4 Alicat.vit ... 77

7.6.5 Aries Drive.vit ... 79

7.6.6 Controllers.vit ... 79

7.6.7 Expressions.vit ... 86

7.6.8 File Reader.vit ... 87

7.6.9 GRIMM 1p109 OPC.vit ... 88

7.6.9.1 Look Up Table.vit ... 88

7.6.9.2 M-Link.vit .. 89

7.6.9.3 MCCDaqAD.vit ... 89

7.6.10 MCCDaqDA.vit .. 90

7.6.11 MCCDaqDI.vit ... 91

7.6.12 MCCDaqDO.vit .. 91

7.6.13 MCCDaqTC.vit .. 92

7.6.14 MICAS-X-RT.vit ... 93

7.6.15 Modbus.vit ... 93

7.6.16 MyRIO Daq.vit .. 95

7.6.17 NIDaqBridge.vit .. 95

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 4

7.6.18 NIDaqCounter.vit .. 97

7.6.19 NIDaqDA.vit ... 97

7.6.20 NIDaqDI.vit .. 98

7.6.21 NIDaqDO.vit ... 99

7.6.22 NiDaqRTD.vit .. 100

7.6.23 NIMotion.vit ... 100

7.6.24 Obis.vit .. 101

7.6.25 Omega.vit .. 101

7.6.26 Picarro G2401.vit .. 101

7.6.27 PID.vit ... 102

7.6.28 Prime Scales.vit .. 104

7.6.29 PWM .. 104

7.6.30 RIO Scan Engine .. 105

7.6.31 System ... 107

7.6.32 System-XRT .. 108

7.6.33 UPS ... 110

7.6.34 Vaisala HI70 ... 110

7.6.35 Vaisala HMT310 .. 110

7.6.36 Watlow.vit .. 111

7.6.37 Web Power Switch.vit ... 111

7.7 Instruments Available at Additional Cost ... 112

7.7.1 Broadcast.vit .. 113

7.7.2 Command.vit .. 116

7.7.3 Email.vi .. 117

7.7.4 M-Link Server.vit ... 119

7.7.5 Ocean Optics.vit ... 120

7.7.6 Ramp.vit .. 121

7.7.7 RT File Transfer.vit .. 123

7.7.8 SMPS Ramp.vit ... 123

7.7.9 Speech Recognition.vit .. 124

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 5

7.7.10 Text to Speech ... 125

7.7.11 WebCam.vit .. 125

7.7.12 Web Page.vit .. 125

7.8 Displays ... 126

7.8.1 3Graphs.vit... 126

7.8.2 Big Display ... 127

7.8.3 Document Display.vit .. 127

7.8.4 Sequences Display.vi ... 129

7.9 Displays Available at Additional Cost .. 129

7.9.1 Indicators Display.vit ... 129

7.9.2 Map.vit .. 130

7.9.3 Multi Display.vit .. 132

7.9.4 Recipes.vi ... 133

7.9.5 XRT Sequences Display.vit ... 134

7.9.6 XYZ Graph.vit ... 135

8 Tools ... 136

8.1 Channels .. 136

8.2 Rename ... 137

8.3 Rename Prefix .. 137

8.4 Alert Calc ... 138

8.5 Channel Scaling .. 138

9 MICAS-X Operation ... 138

9.1 Menus .. 139

9.1.1 Program Menu .. 139

9.1.2 Drivers Menu .. 139

9.1.3 Windows Menu ... 140

9.1.4 Utilities Menu ... 140

9.1.5 Help Menu ... 140

9.2 Buttons .. 141

9.3 Tabs ... 142

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 6

9.3.1 Control Tab .. 143

9.3.2 Display Tab(s) .. 143

9.3.3 Utility Tab ... 143

9.3.4 MICAS-X Tab .. 143

9.3.5 Debug Tab ... 144

9.4 A Note on MICAS-X Window Size ... 144

9.5 Time Series Graphs ... 144

9.6 Modules and Features ... 146

9.6.1 Acquisition ... 146

9.6.2 Channel Lists .. 147

9.6.3 File Writer .. 147

9.6.4 Sequences ... 148

9.6.5 Sequence Sets .. 150

9.6.6 Triggers and Alarms .. 150

9.6.7 Drivers ... 151

9.6.8 Instruments ... 158

9.6.9 Displays ... 159

9.6.10 Calculations .. 161

9.6.11 Timers ... 162

9.6.12 Constants ... 162

9.6.13 Globals ... 163

9.6.14 Program State Variables .. 164

9.6.15 Commands ... 165

9.6.16 Constants ... 167

9.6.17 OSDS ... 167

9.6.18 ICM ... 168

9.7 Using Channel Values in Text ... 168

10 MICAS-X-RT Operation .. 169

10.1 MICAS-X-RT User Interface in Interactive Mode 169

10.2 Configuring MICAS-X-RT ... 170

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 7

10.3 Connecting to MICAS-X-RT with MICAS-X 170

10.4 Debugging MICAS-X-RT Issues ... 172

11 Utilities .. 173

11.1 Command Interface ... 173

11.2 Configuration Editor ... 173

11.3 Data Reader .. 173

11.4 FTP Utility ... 173

11.5 mdoc Editor ... 174

11.6 .mdoc Reader .. 174

11.7 Log Reader .. 175

11.8 TMDS File Reader .. 175

12 MICAS-X Security Device ... 175

13 Appendix A: Reserved Keywords ... 176

14 Appendix B: Commands .. 179

15 Appendix C: User Dialogs and Notifications .. 192

15.1.1 Alert .. 193

15.1.2 Ask .. 194

15.1.3 Ask(OK) ... 196

15.1.4 Ask(Num) ... 197

15.1.5 OpenNotifier ... 198

15.1.6 CloseNotifier ... 198

16 Appendix C: Using Sequences in MICAS-X .. 199

17 Appendix D: Syntax for Equations ... 203

18 Appendix E: Error Messages .. 208

19 Appendix F: Web Power Switch 7 Watchdog Function 211

2 Introduction

 MICAS-X, the Multi-Instrument Control and Acquisition System – eXtended, is a
LabVIEW data acquisition and control program designed for acquiring data from and

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 8

controlling a wide range of instruments. MICAS-X is both configuration-based and
custom-programmable, which is to say that many instruments and systems can be run in
MICAS-X simply by configuring existing modules, but writing new LabVIEW components
for more complex, custom situations can provide additional functionality. MICAS-X is
designed to bridge the gap between using a pre-written, configuration-based program
for data acquisition, and writing a complete, custom application. By providing a wide
range of necessary functionality in its existing code base, MICAS-X can greatly accelerate
the development of data acquisition software. By allowing modular expansion, it can
also accommodate a vast range of capabilities specific to many different situations.

 MICAS-X can be supplied as a compiled program, which does not need to have
LabVIEW installed to run, or as LabVIEW source code run within the LabVIEW
environment. Since MICAS-X source code is available to the end-user, and the MICAS-X
API's and interfaces are documented, a LabVIEW programmer of moderate to advanced
abilities can create custom modules for MICAS-X. Note, however, that MICAS-X does
require a hardware security key for it to be properly licensed and functional. Without a
hardware key, the Limited Demo version of MICAS-X will operate fully for 20 minutes.
Note that the full version of MICAS-X will continue to operate even if the hardware key is
missing, but will periodically remind the operator of the need to license the software.
The low-cost Ltd version of MICAS-X will not start running if the license key is not
present. In order to enforce the hardware key, a small amount of source code is
password protected and unavailable to the end-user.

 As of version 2.1, MICAS-X-RT allows MICAS-X to run on most National
Instruments LabVIEW Real-Time embedded platforms. MICAS-X-RT provides much of the
same functionality as MICAS-X, with the exception of the user interface, since RT
platforms are designed to normally operate headless. A Scan Engine Driver provides easy
access to most IO supported by the Scan Engine interface, and a MICAS-XRT Driver,
which can be loaded into MICAS-X on Windows, allows seamless interfacing between
the Windows program and the robust, real-time RT program.

 A limited license of MICAS-X is designed to address situations for which the full
license would be more expensive than a custom written LabVIEW program. These cases
include fairly simple data logger and control systems for which most of the required
functionality is already available in MICAS-X. For such relatively simple systems, MICAS-X
can provide all the needed functionality and more, but a standard license may well cost
more than writing a custom program. By using the Ltd (limited) license of MICAS-X, the
application can take advantage of the robust, debugged code base of MICAS-X and while
keeping the cost in line with the development of a much less functional custom
program. The Ltd license is available only in the compiled version of MICAS-X. (Any
application requiring source code access is inherently a better match to the full version

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 9

of MICAS-X, which provides more flexibility for the application.) The Ltd license allows
only Ltd configurations to be run in MICAS-X. Any configuration file that has not been
created specifically for the Ltd license will not allow MICAS-X Ltd to run. Similarly, any
license key that has been created for an Ltd license will not allow any non-Ltd
configuration file to run in MICAS-X. Furthermore, each Ltd license will specify the exact
MICAS-X modules that are allowed for that license. The configuration for the Ltd license
can be edited as needed, but only to the extent that it uses the modules that the specific
Ltd license allows. Any configuration file that has been created for an Ltd license can only
be edited by the MICAS-X Configuration Editor. (Although standard MICAS-X
configuration files can be edited in a text editor, it is recommended that the MICAS-X
Configuration Editor always be used to ensure valid configurations.)

 Another licensing option for MICAS-X is the Student Edition (SE) license. This
license functions the same as the Ltd license: e.g. it requires a SE license key to be
present for MICAS-X to run, and it only allows SE configuration files to be run. Unlike the
Ltd license, the SE license is available only for the LabVIEW source code version, not the
executable version. This license is intended for undergraduate or graduate level students
in the sciences, engineering, or similar disciplines who need a relatively easy way to
control experiments and collect data. As such, it is free for student use, either for
classroom work or for research. This license includes all the Drivers that come with the
base MICAS-X license, as well as additional NIDaq Drivers. With MICAS-X-SE and an
inexpensive NI Daq board, one can quickly configure analog input, analog output, digital
input, digital output, and much more.

 MICAS-X version 3 is written in LabVIEW 2018 and is supported in Windows 7
and Windows 10. Although no longer directly supported, MICAS-X version 1 has also
been used successfully on Windows XP and Window 8. The MICAS-X Drivers for NIDaq
Devices (NIDaqAD, NIDaqDA, NIDaqDI, NIDaqDO, and NIDaqCounters) support basic Daq
functionality of any National Instruments data acquisition device that is supported by
the National Instruments DAQmx hardware driver.

3 MICAS-X Overview

3.1 Program Structure

 The overall design of MICAS-X is based on the assumption that many instruments
and systems share a common set of infrastructure needs. Typically, these include some
slow (usually 1 Hz) monitoring of “housekeeping” or instrument health data, logging that
data to a file, sequencing through various states and modes of operation, setting
outputs to the proper values for those states and modes, alarming off of conditions that
are out of range, logging errors, and so on. In addition, many systems contain one or

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 10

more processes that are far outside the range of these features. Often, there will be a
core functionality that involves high speed data acquisition, highly-customized control or
timing, complex data structures, or other complex operations. MICAS-X is intended to
accelerate the development of these types of systems by providing a re-useable set of
infrastructure, while also allowing the creation of customized modules that can handle
the complex operations. Although this pattern of accelerated development of advanced
systems is the primary market for MICAS-X, the infrastructure that has been developed
to support that goal results in a program that is applicable to many other experiments
and systems as well. Many quick laboratory or prototype tests can be configured using
just the components of MICAS-X that are already developed. Thus, due to its flexible
nature, MICAS-X can be configured to accommodate many data acquisition, instrument
monitoring, and experimental sequences with little or no custom programming needed.

 The MICAS-X program itself serves as the coordinating shell for various modules.
The Configuration Editor is used to define what modules are included and how each of
them is configured to operate. Multiple configuration files can be created, allowing
MICAS-X to take on many different personalities for different situations. Once MICAS-X
is run, it reads the selected configuration file and starts each of the needed modules.
The Acquisition module contains one or more loops which acquire data from the
selected Driver modules. The Triggers module continuously monitors the data acquired
by the Acquisition module and executes any commands that are configured to be
triggered by user-defined conditions based on the data. The Sequences module
executes any predefined sequences, changing output channels as needed to step the
system through various states.

 By only loading the modules specified in the configuration file, MICAS-X can
support a huge amount of functionality, yet the program will only contain those
resources needed for the current situation.

3.2 Components

 MICAS-X includes numerous components, many of which are designed as plug-in
modules. With this architecture, new features can be added to a MICAS-X system simply
by copying folders of source code to the appropriate destinations and then editing the
configuration file to use the new components. The primary MICAS-X Components are:

⚫ MICAS-X.vi - the main control program. This VI controls the entire MICAS-X

system, starts and stops modules, and provides the primary interface for the
operator to interact with MICAS-X.

⚫ Modules (7.4) - a set of functions that is always included in MICAS-X. New
modules can only be added by creating a new version of MICAS-X. This is

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 11

normally done only by OCC. Modules include Acquisition, Triggers, Sequences,
File Writing, Commands, and others.

⚫ Drivers (7.5) - software interfaces to hardware devices and other functionality
for reading data and controlling outputs. Drivers are intended for handling
"slow" data, with rates on the order of once per minute to 20 Hz, with 1 Hz being
typical.

⚫ Instruments (7.5) - components that incorporate specialized functions, often
used for high-speed data acquisition or control, or other types of acquisition or
control that do not fit into the Driver model. Each Instrument can also include its
own Display.

⚫ Displays (7.8) - components that display data to the end user or allow access to
MICAS-X functionality, but which may not be directly tied to a specific Instrument
or Driver.

⚫ Calculations (7.5.4) - VI's that can be written by the end-user, according to a
well-defined API, which can incorporate more complex calculations than can be
created using the Equations Driver (which allows text calculations). Calculations
are evaluated by the Calculations Driver.

⚫ Utilities (10) - top-level programs that can be run inside or outside of MICAS-X
and which provide additional functionality of a type that is not required for
MICAS-X to run. Examples are programs that review data or log files or that edit
the configuration file.

⚫ Configuration File (7) - a text-based file that defines what modules will be
included when MICAS-X runs and how MICAS-X is set up to run.

⚫ MICAS-X-RT (3.11) – a version of MICAS-X that runs directly on a LabVIEW RT
platform, providing an extremely robust, real-time program for control and
acquisition, with direct integration with MICAS-X on a Windows platform. Many
of the above modules function on MICAS-X-RT, including Sequences, Triggers and
Alarms, File Writing, Commands, Event and Error Logging, many Drivers, and
select Instruments. Displays and Utilities, which are inherently user-interface
modules, are not supported under MICAS-X-RT, but the Configuration Editor (run
on a Windows machine) is used to configure MICAS-X-RT for operation.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 12

3.3 Channels

 Much of the predefined functionality of MICAS-X is focused on the data
Channels. Triggers compare Channel values to trigger conditions, and can set Channels
to new values if the condition is met. Sequences can operate on Channel values, as can
Commands. It is important, therefore, to understand where these Channels come from,
and what their features and limitations are.

 As described in section 3.5, all the MICAS-X Channel values are stored in a one-
dimensional array of double-precision reals. This buffer contains the most recent value
of every channel. The historical record of these Channels' values is recorded in various

data files, described in section 3.7. The Acquisition module (section 3.4) is in charge of
keeping the buffer up-to-date.

 With a few exceptions, all Channels originate in MICAS-X from Drivers.
Instruments, Displays, and Utilities cannot supply MICAS-X with Channels. Drivers,
however, can operate on two types of Channels, Input Channels and Controllers (or
Output Channels). (Note that the Controllers Driver refers to a way to implement PID
and similar control loops, and does not refer to a Driver that handles all Controller
Channels.) Input Channels are data that is read into MICAS-X, typically from a hardware
device, but sometimes from another source (such as in the case of the Equations Driver
and the Calculations Driver). Controller Channels are Channels that the operator or
MICAS-X can write to. Typically, these would be output channels of a hardware device,
such as an analog output voltage. But Controller Channels also include things like
Manual Driver Channels and Globals, both of which are simply types of program
variables for MICAS-X.

 There are a few special Channels that do not come from Drivers. Globals (see

section 9.6.13) are configured as a separate Module, not as a Driver. Program State

Variables (section 9.6.14) are special Channels that MICAS-X always supplies, and are

not configured in any Driver. Constants (section 9.6.16) can be used in a way similar to
Input Channels, but are not logged to file, and are configured as a Module, not as a
Driver.

3.4 Acquisition

 Many of the functions of MICAS-X are designed around the data acquired and
controlled by the Driver modules. Although custom modules can be written to handle
much more complex data requirements, the Driver data is intended to provide the
information and control MICAS-X needs to operate the system.
 Any number of Drivers can be added to the MICAS-X configuration. Numerous
Drivers are included in the base package, many more can be purchased separately, and
custom Drivers can be created very cost-effectively. Many Drivers are written in a way
that allows them to be instantiated more than once in a configuration. For example, the

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 13

NIDaqAD Driver acquires analog data from most National Instruments Daq devices. It
can be instantiated multiple times, once for each Daq device attached to the system.

 Within MICAS-X, the Drivers are controlled by the Acquisition module. The
Acquisition module can dynamically create any number of Driver loops, and each loop
can run at its own rate. Thus devices that each run at separate acquisition rates can all
co-exist within MICAS-X. Data from a GPS may be acquired at 1 Hz, while an NI Daq
device might acquire data at 10 Hz. Each loop can also control the writing of one or
more data files. Thus the data from the different frequency loops can all be archived
with no loss.

 Drivers support three main forms of functionality: Aquire, Set, and Command.
The Acquisition module calls the Acquire function of each Driver at the specified loop
rate. This reads all the input channels that the Driver supports. The Set function can be
called by numerous parts of the MICAS-X system, including Sequences, Triggers, and the
user interface. The Set function controls the output channels that the Driver supports.
The Command function allows the Driver to include additional functionality that doesn't
fit in well to the paradigm of input and output channels. An example would be a motion
control Driver. The Acquire function could read the current position of the motion
device. The Set function would tell the device where to move to next. Then custom
Commands would be used to start and stop the motion. Although many Drivers support
only Acquire or only Set functions, Drivers can include any or all three of these functions.

 MICAS-X includes an Acquire Command, which is often mapped to a switch at
the top of the screen. When Acquire is Off, the Drivers are not queried for new data.
When Acquire is On, the Acquisition Loops are running and the Driver data is updated at
the defined loop rates. Drivers also have Enable and Disable Commands. Whereas
Aquire turns all the Drivers on or off at once, Enable and Disable can be used on a single
Driver. Disable can also be used if one device fails in hardware, so that MICAS-X ignores
that device when it is disabled and prevents unnecessary redundant errors from being
logged.

3.5 Data Types

 For simplicity and flexibility, MICAS-X uses a single data type for the input and
output data that the Acquisition module handles. This data is stored as a one-
dimensional array of double-precision (8 byte) reals. When a device requires another
numeric format (such as a 2 byte, unsigned integer), the data is coerced in or out of
reals. For Boolean (true/false) data, MICAS-X uses the standard convention of False = 0,
True = 1. In addition, any other non-zero value is also interpreted as True.

 The IEEE definition of reals allows for the special values of +Infinity, -Infinity, and
NaN (Not-a-Number). MICAS-X therefore supports these values as well. +Infinity and -

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 14

Infinity can be useful for moving the Thresholds of Triggers to a value that can never by
attained, effectively turning the Trigger off until the Threshold is reset to another value.
NaN is used in MICAS-X to indicate missing values. Some Drivers may return NaN within
their data if communication to a device failed. In addition, all input channels for all
Drivers are initialized to NaN when MICAS-X starts up, and all Channels return a value of
NaN when Acquire is off or a Driver is Diabled.

 The value of NaN causes complications when channels that represent Boolean
data are used, since the normal interpretation of <>0 (not equal to 0) will return a True if
the channel value is NaN. It is often the case that an uninitialized Boolean channel
should not default to True. Within MICAS-X, the test (<>0 AND <>NaN) is used to avoid
this situation. In addition, Triggers and Sequences support several special conditions to
enable the proper handling of NaN.

 Within MICAS-X, there is a buffer that includes all the most recent values of all
the Driver channels. This buffer is updated by each Acquisition loop. In addition, any
command to a Driver to Set an output channel updates that channel's value in the buffer
when the channel is updated. (E.g. the output channels do not wait for the Acquisition
loop (which updates the input channels) before updating the output channels in the
buffer.) Whenever MICAS-X needs to know a value of any of the Driver channels, the
buffer is queried. For optimal performance, a query to the buffer for one channel also
returns the entire array of all channel values. Thus, when MICAS-X needs several
channel values, one channel can be queried directly from the buffer, while the other
channels are then pulled out of the full array of data that was returned. This allows the
values numerous channels to be obtained while only making a single call to the buffer.

 By limiting the Driver data to a single data type, and by defining a universal
Driver software interface, MICAS-X can take optimal advantage of the data acquired and
set by the Drivers. Any Driver written to the MICAS-X specification will have its data fully
integrated into the MICAS-X system. That data can be logged, displayed, and used
throughout MICAS, including within the Trigger and Sequence logic.

 Although the Acquisition module is limited to this single data type, the modular,
customizable nature of MICAS-X readily allows for the handling of more complex data
types. Custom Instruments can be added to MICAS-X which can handle a nearly
unlimited scope of data types.

3.6 Channel Lists

 Since MICAS-X can include many Drivers, and each Driver can contain many
channels, it is easy to create systems with hundreds of data channels. Having more than
a few dozen channels can create user interface challenges. For instance, if there is a
time-series graph for which the user can select a channel to display from a drop-down
menu, it can be difficult to find the desired channel in a list of hundreds of channels.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 15

MICAS-X resolves this issue by allowing the operator to configure any number of
Channel Lists. Key elements of MICAS-X then operate on a selected List. A time-series
graph may be configured so that it only presents channels from one List. A data logging
file can be configured to write only the channels from another list. In this way, MICAS-X
streamlines the user interface and provides additional flexibility for dealing with large
numbers of channels.

3.7 File Storage

 MICAS-X utilizes many different data files. As mentioned above, the
configuration file (with an extension “.ini”) defines how MICAS-X will operate. The
“Config to Load.txt” file tells MICAS-X which configuration file to load. When MICAS-X
starts running, it immediately archives the configuration file in a date-named data folder.
This way the data acquired will always be in the context of how the system was
configured when the data was acquired.

 MICAS-X automatically creates a log file in the date-named data folder. The log
file notes various software events, such as when the main program and each module
starts and stops, the version of each module, and any errors that MICAS-X encounters.
In addition, many other events can be configured so that they are logged, such as
Sequence steps, Alarms, and Triggers. Operator notes and messages from other
programs can also be sent to the log file. The log file therefore can provide a valuable
record of how an experiment ran, and can also be an invaluable debugging tool when
developing new modules or setting up new configurations.

 Whenever MICAS-X is running, all the Driver data is automatically stored in a
.tdms data file. (TDMS (Technical Data Management - Streaming) is an efficient, flexible,
searchable file format created by National Instruments.) This data file serves as the
ultimate archive of all the Driver data, and is used by MICAS-X for other purposes,
including the History Data described below. In addition, a TDMS File Reader utility is
included as a Utility for reviewing the data in this file. It is important to note that the
TDMS file is written by the default Acquisition Loop (Loop 0). Thus if multiple loops are
configured, it is important to consider which device(s) are configured to use Loop 0.
Putting the fastest loop rate in loop 0 will ensure that all the data from the fastest
drivers is logged to the .tdms file, which could be desirable, but which also has the effect
of increasing the disk space used by the .tdms file. Putting the fastest devices in another
loop will result in loss of fast data in the .tdms file, but other file logging can be enabled
in the faster loop such that only the fast device data is logged to a separate file. This
configuration ensures that no fast data is lost, yet also prevents the .tdms file from
growing unnecessarily. Finally, note that the .tdms file is automatically restarted every
three hours. This prevents any one .tmds file from growing too large.

 Besides the .tmds file, it is possible to configure any number of additional text-
based data files, or comma-separated-variable (.csv) files. Each .csv file can be

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 16

configured to save a specific Channel List, and can be configured to be written by any
Acquisition Loop. This allows precise control of how and when data is logged.

 MICAS-X includes a Record Command, which is often mapped to a switch at the
top of the screen. Note that the Record Command only acts to turn file writing on and
off for the .csv data files. The .tdms data file is always being written to when Acquire is
On, regardless of the value of Record. Additional Commands can turn recording on and
off for individual .csv files.

 MICAS-X also makes uses of several other types of data files. A menu option
allows one to save screen shots of the MICAS-X display in .png graphics files. Sequences
can be saved to and read from .seq files. Custom MICAS-X modules can create any other
types of files that are needed as well.

3.8 History Data

 One of the primary uses of the .tdms data file is to provide history data for time-
series graphs. Time-series graphs are present in many places in MICAS-X, including the
Control Tab, various Displays, and Quick Graphs. Most time-series graphs allow the
operator to select the Channel(s) to display from a List of Channels. Each time-series
graph has a local data buffer associated with it. The program adds new data points for
the selected channels to the data buffer every time the Acquisition module acquires new
data. As long as the Channels displayed are not changed, the time-series graph utilizes
the main data buffer for new data and its local buffer for history data. When the user
changes the Channel(s) being displayed, the time-series graph accesses the .tmds file to
read the history data for the new Channel(s). This history data is placed in the local
buffer, and the graph proceeds as before.

 Several aspects of this history data mechanism deserve note. First of all, there is
a configuration option that tells MICAS-X whether to read a single .tdms file or to gather
history data from the two most recent .tdms files. Enabling two-file history can improve
time-series graphs significantly. Since .tdms files are automatically restarted every 3
hours, if only one .tdms file is being used for history data, it is possible that a time-series
graph might only have 2 minutes of data shown in it even though MICAS-X has run for 3
hours and 2 minutes. Enabling two .tdms file reading ensures that time-series graphs
have a reasonable amount of history data available when Channels are changed. Note
that if the operator does not change the displayed channels, the local buffer for the
time-series graph can grow much deeper than 3 hours. This depth is also controlled by
another configuration parameter. Thus if very long time-series graphs are needed, it
may be advisable to create a MICAS-X Display that predefines (in the configuration file)
which Channel(s) are being graphed, so that the operator cannot change the Channel(s)
and the history data can accumulate for a much longer period of time.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 17

 It should also be noted that as the number of Driver channels gets large in a
MICAS-X configuration, reading history data from even just a three hour .tdms file can
incur a performance hit. Thus switching channels on a time-series graph could
potentially impact the operation of the program. Again, using time-series graphs with
predefined channels can be a way to avoid this situation. Disabling two-file history can
also reduce the potential performance hit.

3.9 Commands

 Dozens of Commands are built in to MICAS-X, and any Driver can add more
custom Commands to the program. The Commands are all handled by a Command
module that runs as a top level program in parallel to all the other MICAS-X modules. All
Commands are sent to this module, which then calls the required functions of various
MICAS-X modules to execute the Commands.

 The structure of a MICAS-X command is Command (string) : Parameter (string,
optional) : Value (numeric, optional) Thus, some example Commands are:

Record : 1 (turns on recording)

Set : Flow : 22.4 (sets the Channel “Flow” to a value of 22.4)

Commands can be accessed in numerous ways in MICAS-X. There is a row of up
to 12 buttons on the top of the main MICAS-X window that can be programmed to each
execute a Command. Triggers and Alarms can execute one Command when turning
from False to True, and another when turning from True to False. Sequences are made
up of Commands, with additional parameters in each Sequence step that allow one to
define conditional sequence steps. Finally, the Command Interface Instrument can be
used to have MICAS-X receive Commands from another instrument or program.

The Commands allow the operator to define complex interactions, sequences,
and conditions within MICAS-X. Often, the entire behavior of a complex system can be
programmed in MICAS-X simply by configuring Triggers, Sequences, and other

Commands. See Appendix B: Commands for a list of Commands.

3.10 Program Versions

 MICAS-X for Windows is available in several versions. It can be supplied as
source code and run within the LabVIEW environment, or it can be supplied as a
compiled executable and be run without the need for a LabVIEW license. In addition,
MICAS-X comes as the normal, full license version, a limited (Ltd) license, a Student
Edition, and in a Demo version. MICAS-X-RT, a version that runs on LabVIEW Real-Time

embedded platforms, is discussed in the next section, 3.11.

 It is useful to purchase the LabVIEW source code version of MICAS-X if you plan
to add your own modules to the system. With the source code version, you can see the

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 18

source code of approximately 90% of the MICAS-X system. (A small portion of the
source code is password protected.) Thus you can use existing Drivers, Instruments,
Displays, and Calculations as examples for how to write your own code. In addition,
source code enables easier debugging of new MICAS-X modules. One major
requirement for using the source code version is that you must also purchase a LabVIEW
license from National Instruments.

 The compiled, executable version of MICAS-X is useful if you wish to deploy a
system on a computer that does not have LabVIEW installed on it. It is often advisable
to debug the system first in source code before deploying it this way.

 Both the source code and compiled, executable versions can be supplied as the
normal, licensed version of MICAS-X. When MICAS-X is licensed, a small USB dongle is
supplied by Original Code Consulting which must be attached to the computer running
MICAS-X. This dongle verifies the licensing. If the dongle is not detected, the program
will periodically switch to the Summary tab and display a message asking the operator to
please ensure that the program is properly licensed. Other than switching tabs, no
functionality of the program is impacted by the lack of a USB dongle, since it is
imperative that experiments and data not be impacted by the possible accidental
removal of the USB dongle or its possible failure.

 The LTD (or Limited) version of MICAS-X is available in certain situations. It
provides a lower-cost entry point than the full version of MICAS-X, but is tailored to a
specific experiment or system. Modules that were not sold with a LTD license cannot be
later added without assistance from OCC. The LTD version is available as an executable
only, and the license key must be present for the LTD version to run.

 The Student Edition (SE) is a special version of the LTD license. It is intended as a
very low cost entry point for graduate or undergraduate students. It includes Drivers for
National Instruments Daq, including analog input, analog output, digital input, and
digital output, as well as the features normally included in the MICAS-X base package.
Additional modules can be added at a significant discount. MICAS-X SE is available as
either an executable or as source code.

 The Demo version of MICAS-X is available for free. It does not come with a USB
license dongle. It is available only as the compiled, executable version, not as source
code. In addition, it is functional only for 20 minutes. After 20 minutes, acquisition and
recording will stop and the program will no longer respond to most Commands. If you
are using the Demo version, you accept all risk regarding what may happen to your
system if it is running when MICAS-X becomes disabled. Note that the Demo version
states that it is the Limited Demo version in the window title bar. Also note that if you
are using the Demo version and you DO plug in a USB license dongle, the 20-minute
time limit will not be imposed, and that version can then be used with full functionality.
However, if you have a USB license dongle, it is advised that you obtain the full version

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 19

of MICAS-X so that if the dongle is removed or fails, the program will not become
disabled.

3.11 MICAS-X-RT

MICAS-X-RT is a version of MICAS-X that has been edited to enable it to run on
National Instruments’ embedded platforms which run LabVIEW RT. It can be deployed in
several ways. If it is delivered as source code, it can be launched directly from the
LabVIEW environment and run in interactive mode. In this case, when the run arrow is
pressed, it downloads the source code to the RT target and runs it. The front panel is
open and available, and one can view and interact with the program directly. This is the
only mode of operation in which there is a direct user interface to MICAS-X-RT. Although
this mode does provide a limited user interface, from which one can issue commands
and set channel values, MICAS-X-RT has been designed as an embedded, headless
program. Thus the user interface available in this mode is fairly limited. For similar
reasons, the Display and Utility modules of MICAS-X are not supported in MICAS-X-RT,
since they are inherently user facing. This interactive mode of deploying MICAS-X-RT is
useful for debugging, but is not normally the main mode of operation of MICAS-X-RT.

 A second mode of deployment is for OCC to deploy all the relevant code to the
RT target and then set the MICAS-X-RT program to run automatically at boot-up. This is
the standard mode of operation of MICAS-X-RT. When properly configured, with a
configuration file installed on the RT target, MICAS-X-RT can run unattended, keeping a
system under continuous control and logging data as needed. MICAS-X on Windows can
then connect to MICAS-X-RT whenever needed, to view status and data. In this mode, if
new modules or source code needs to be added to the RT system, OCC can assist with
the installation of new code, or directions can be given for the customer to use an FTP
program to add the new code to the RT system.

 A third mode of operation is very similar to the second, but allows for more
flexibility. In this mode, MICAS-X-RT (and optionally MICAS-X) are present on a Windows
computer, along with the LabVIEW environment. MICAS-X-RT is normally installed
directly on the RT target as in the 2nd mode, but the MICAS-X-RT Project on the Windows
computer allows for an easier mechanism for deploying new modules and code to the
RT system when needed.

 For all three options, it is possible and easy to use the MICAS-X program on a
Window platform to provide a user interface to MICAS-X-RT. When the MICAS-XRT
Driver is included in a MICAS-X configuration, all the channels and commands on the RT
system become directly accessible in the MICAS-X Windows system. This allows for quick
review of the RT system status and of channel values, and also allows for complete direct
control of the RT system. The MICAS-X program on Windows can be stopped and
restarted whenever desired without interrupting the MICAS-X-RT program (as long as
the MICAS-X-RT configuration file defined in the MICAS-XRT Driver is not altered.) (Note

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 20

that MICAS-X-RT is the version of MICAS-X that runs under LabVIEW RT on a NI RIO
system. The MICAS-XRT Driver is a module the runs under MICAS-X on Windows and
communicates with MICAS-X-RT.)

In the various sections of this document, it is noted when a module is known to
work only in MICAS-X-RT or MICAS-X for Windows. If not otherwise stated, a module
may work in MICAS-X-RT, but may require additional testing and development.

3.12 Controlling one MICAS-X from another MICAS-X

Several mechaninism are available that allow multiple MICAS-X programs to
communicate with each other. Selection of the appropriate communication mechanism
depends on the requirements of the situation. Several options are described here that
could help in many situations.

One simple way to share data between instances of MICAS-X is to use the

Broadcast Instrument (see Broadcast.vit)7.7.1 and the MICM Driver (MICM.vit) (or

the older MOSDS Driver (MOSDS.vit)). The Broadcast Instrument can send a selected
Channel List to out a serial port or Ethernet port at a specific rate, such as once a
second. On the second MICAS-X system, one can create an MICM configuration file that
can parse that Channel List. In this way, current values of a selection of channels from
the first MICAS-X system can be readily available on the second MICAS-X system. This
mechanism works between Windows systems and RT systems. Note that whenever the
Channel List being broadcast is edited, the corresponding MICM configuration must be
updated to allow the receiving program to parse the data correctly.

The Command Interface Utility (see Command Interface) is often used in
conjunction with the Broadcast Instrument described above. Where-as Broadcast shares
data from the first MICAS-X with the second, the Command Interface Utility allows the
second MICAS-X to send commands to the first. To use the Command Interface Utility,
one must include the Command Instrument in the configuration of the MICAS-X program
to which Commands are being sent, e.g. the server MICAS-X. In addition, the server
MICAS-X configuration file must be available on the computer on which the Command
Utility is being run, e.g. the client MICAS-X. By having a copy of the server’s configuration
file, the client Command Utility knows all the Channels, Sequences, Triggers, etc., that
the server has available, and thus can format and send Commands that are specific to
the server system. As with the Broadcast Instrument described above, it is necessary to
keep the server’s configuration file consistent between the server and client systems.
E.g. if the server system configuration changes, one should copy that new configuration
file to the client system. Also, note that since the Command Interface is a Utility, it
cannot be configured to run automatically within MICAS-X. Instead, when you start the
client MICAS-X, you must select the Command Interface from the Utility menu.
Alternatively, one can run the Command Interface Utility as a separate program. The
default Command Interface Utility has some configurable options in its user interface to

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 21

allow one to set up commonly-used Commands that can be easily executed. In addition,
a more general, though more tedious, set of controls allows one to specify any available
Command to issue to the server program. It should be noted that custom versions of the
Command Interface Utility have been created for specific project, so that the user
interface can support a variety of controls that are more relevant and familiar for that
particular use of MICAS-X.

MICAS-X-RT (see MICAS-X-RT Operation), the version of MICAS-X that runs on
NI’s real-time platforms, is designed to seamlessly integrate with MICAS-X on Windows.
The MICAS-X-RT program itself contains the communications links to support this
functionality, so no additional modules are needed on the RT (server) program. On the

Windows (client) MICAS-X, one must include the MICAS-XRT Driver (MICAS-X-RT.vit).
As with the Command Interface Utility above, the MICAS-XRT Driver must be given the
full configuration file of the MICAS-X-RT system, and if the MICAS-X-RT configuration is
edited, one must remember to update the copy of that configuration file that the client
(Windows) MICAS-X is using. With this interface, the full set of Channels on the MICAS-X-
RT system are present in the Windows client system, with a “XRT_” prefix. In addition, all
the Commands that the MICAS-X-RT system supports are available on the Windows
client system as well, again with an “XRT_” prefix. This allows the operator to watch data
on the RT system in real time from the Windows MICAS-X, and to issue Commands, start
Sequences, etc., on the RT system directly from the Windows MICAS-X.

A mechanism similar to the MICAS-XRT Driver exists for linking two MICAS-X
instances which are both running on Windows: M-Link. For the M-Link system, both the
M-Link Server Instrument and the M-Link Driver must have the same prefix (even though
these modules are on different computers). A blank prefix is a valid option. If more than
one M-Link connection is being made, the modules must have unique prefixes, so that
each M-Link Server and M-Link Driver have matching prefixes that are unique from all
other M-Link Servers and Drivers. As with MICAS-XRT, the M-Link Driver must be
configured to know the configuration file used by the instance of MICAS-X running the
M-Link Server, as well as the IP address of the computer running the M-Link Server. With
this information, the instance of MICAS-X running the M-Link Driver can access all the
Channels of data, Commands, Sequences, etc., that are running in the instance with M-
Link Server. See the sections on the M-Link Driver 7.6.9.2 and M-Link Server 7.7.4 for
more information.

The Drivers (M-Link Driver 7.6.9.2 and MICAS-XRT Driver 7.6.14) for the M-Link
and MICAS-X-RT communications links create a “connection” channel that indicates the
health of the network connection between the two systems. For each communication
link, there are three connections happening behind the scenes: one for Commands to
the server from the client, one for Messages from the server to the client, and one to
pass current data values from the server to the client. Each of these three connections
has a value of 0 when it is not connected and a value of 1, 2, or 4, respectively, when

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 22

they are connected. Thus when the connection channel has a value of 7, all three
connections have been made successfully and the link is working properly. A connection
value of 5, for example, would mean that the Message connection has not been made
successfully.

3.13 MICAS Metrics Program

MICAS-X includes an opt-in automatic feedback feature that sends limited metrics
data to Original Code Consulting. This program, called MICAS Metrics, can be enabled or
disabled in the full or LTD versions of MICAS-X from the Help menu. Note that for the
Demo and SE versions, this program is turned on by default.

 The purpose of the MICAS Metrics Program is to improve MICAS-X for all
customers, by allowing OCC access to information on how MICAS-X is being used and
what improvements are needed. If the Metrics option is turned on, information about
the MICAS-X serial number, configuration, usage, and errors encountered with MICAS-X
will be transmitted to OCC. No data that is acquired with MICAS-X will be sent, and all
data transmitted by this mechanism will be held in strict confidence by OCC.

4 Notes on Installation

 Hardware requirements for installation of MICAS-X are the same as those for
installing LabVIEW. MICAS-X is currently supported for LabVIEW 2018, 32bit, running on
Windows 7 and 10, 32 or 64 bit. It is generally compatible with Windows XP, Vista, and
8, but is no longer supported on those operating systems. As of Version 3.3, MICAS-X is
compatible with 64 bit LabVIEW as well as 32bit LabVIEW.

 Refer to the MICAS-X Installation Manual document for detailed instructions on
installing MICAS-X either as LabVIEW source code to be used inside the LabVIEW

environment, or as an executable stand-alone program. Also refer to Chapter 12MICAS-

X Security Device for information about the USB license key.

 In addition to installing MICAS-X and the USB security device, there are several
other issues that should be considered when setting up your computer to run MICAS-X.
If your computer is not connected to the internet, it may be worth considering disabling
or uninstalling anti-virus software. Some anti-virus packages are known to interfere with
data acquisition processes, though others have been used without any observed issues.
You might also consider turning off Windows Auto-Updates, but do this at your own risk.
If Auto-Updates are left on, it is important to configure your computer so that it does
not automatically reboot after installing an update. A google search for terms such as
“no reboot after automatic update” should return some useful links with instructions for
disabling this annoying option, though Windows 10 has made it much more difficult to
disable.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 23

 It is also very important to configure your computer's power options. It is
recommended that you set the power scheme to never turn off your computer and
never turn off the hard disk if the computer is plugged in (not on battery power). Having
a data acquisition computer go to sleep when it is supposed to be taking data does no
one any good. It is also recommended that you turn off screen savers, though no
obvious issue arising from their use have been observed. In fact, MICAS-X includes code
that automatically disables screen savers when it is running.

 Numerous steps are required to configure MICAS-X-RT for a specific Real-Time
target. This initial configuration will normally be done by Original Code Consulting. If
appropriate, OCC will provide additional instructions for deploying future code
modifications.

5 Locating Files and Directories on a Hard Drive

 Various parts of the MICAS-X system are stored in different places on your hard
disk. If you are using the executable version of MICAS-X, read the section immediately
below. If not skip to the section on source code.

5.1 Directories Used with the Executable Version of MICAS-X

 Under C:\, go to the folder labeled “OCC.” Inside are the following folders:

⚫ MICAS-X Data – Where data collected by MICAS-X is stored by default. Folders
within this folder will be titled in yyyymmdd format.

⚫ MICAS-X Support – The configuration file is found in this folder. A text file named
“Config to Load.txt” informs the program which file to use as the configuration
file the next time the program is run. Both the text document and configuration
file are in the first level of this folder. The configuration file has a .ini extension. If
the file C:\OCC\MICAS-X Support\Config to Load.txt does not exist, then the
MICAS-X program will automatically look for a configuration file named
C:\OCC\MICAS-X Support\MICAS-X Configuration.ini

This MICAS-X Support folder also contains all or most of the following folders:

⚫ Defaults
⚫ Displays
⚫ Drivers
⚫ Documents
⚫ Documentation (this folder is deprecated in favor of the Documents folder)
⚫ Editors
⚫ Resources
⚫ Scripts

mailto:dthomson@originalcode.com
../../Users/dthom/AppData/Users/Users/dthom/AppData/Users/David/AppData/Local/AppData/Local/AppData/Users/C:/

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 24

⚫ Utilities
 These folders contain various resources and source code that the program uses.

 Executable files for MICAS-X are located in C:\Program Files\MICAS-X, or on 64
bit operating systems, in C:\Program Files (x86)\MICAS-X. This fould should contain at
least the following:

⚫ MICAS-X Configuration Editor.exe
⚫ MICAS-X Data Reader.exe
⚫ MICAS-X Log Reader.exe
⚫ MICAS-X mdoc Editor.exe
⚫ MICAS-X TDMS File Reader.exe
⚫ MICAS-X.exe

5.2 Directories Used with MICAS-X in Source Code

 Under C:\, go to the folder labeled “OCC.” Inside are the following folders:
⚫ MICAS-X Data – Where data collected by MICAS-X is stored by default. Folders

within this folder will be titled in yyyymmdd format.
⚫ MICAS-X Support – The configuration file is found in this folder. A text file named

“Config to Load.txt” informs the program which file to used as the configuration
file the next time the program is run. Both the text document and configuration
file are in the first level of this folder. The configuration file has a .ini extension. If
the file C:\OCC\MICAS-X Support\Config to Load.txt does not exist, then the
MICAS-X program will automatically look for a configuration file named
C:\OCC\MICAS-X Support\MICAS-X Configuration.ini

 Under C:\, go to the folder labeled “MICAS-X.” Inside are most or all of the
following folders:

⚫ Acquisition
⚫ Calculations
⚫ Channel Lists
⚫ Command Loop
⚫ Common
⚫ Configuration
⚫ Defaults
⚫ Development Documentation
⚫ Displays
⚫ Documents
⚫ Drivers
⚫ Editors
⚫ File Writer

mailto:dthomson@originalcode.com
../../Users/dthom/AppData/Users/Users/dthom/AppData/Users/David/AppData/Local/AppData/Local/AppData/Users/C:/
../../Users/dthom/AppData/Users/Users/dthom/AppData/Users/David/AppData/Local/AppData/Local/AppData/Users/C:/

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 25

⚫ FPGA Bitfiles (optional)
⚫ Instruments
⚫ KeyLok
⚫ Log File Component
⚫ Program
⚫ Project Files
⚫ Reporting
⚫ Resources
⚫ Sequencer
⚫ Scripts
⚫ Test
⚫ Triggers
⚫ Utilities

Other files, including .alias and .lvlps files and LabVIEW Project files may also be

present in the aforementioned folders.

5.3 Directories Used with MICAS-X-RT

LabVIEW RT platforms use several different Operating Systems, depending on the
particular model of hardware. Within MICAS-X, paths are built up with the “Build Path”
function from individual folder names, thus allowing LabVIEW on each platform to
create the correct path syntax. For this document, directories will be referred to using
standard Windows path syntax, even though this will not be exactly correct on all RT
platforms.

The main MICAS-X-RT program will normally be named startup.rtexe and stored in
the RT platform’s default startup location, which usually looks something like
“home\lvuser\natinst\bin”.

Data is stored in “C:\OCC\MICAS-X Data”. Support files are stored in
“C:\OCC\MICAS-X Support”. The folder structure within the MICAS-X Support folder on
RT systems is identical to that described above for executable versions of MICAS-X.

5.4 File Types Used with MICAS-X

 The following file types are used with the MICAS-X program.

File Extention File Description

.vi, .vit, .ctl, .lvproj,

.lvlps, .aliases, etc .
The LabVIEW programming environment uses numerous file
extensions. The list to the left contains the most common.

*.dig Several Digitizers are supported as MICAS-X Instruments. Digitizer data
can be stored to .dig files, and the dig File Reader Utility can be used to

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 26

review them.

.exe Executable versions (which do not run inside LabVIEW) of MICAS-X and
its utilities have the .exe extension.

.ini Configuration files for MICAS-X have the .ini extention. Executable
(.exe) versions of MICAS-X and its utilities also have .ini files that
determine how they run.

.txt The Config to Load.txt file, which determines which configuration will
be used when MICAS-X is run, has this extension.

.mhlp Run-Time help files for MICAS-X use the .mhlp extension.

.mdoc This extension is used by text documentation files used by the MICAS-
X Document Driver.

.mseq The Sequence Editor in MICAS-X allows for Sequences to be imported
and exported to text documents using the .mseq extension.

.mscr MICAS-X Scripts are saved in .mscr files. They are not contained
directly in the MICAS-X configuration files.

.osds OSDS format files, used by the MOSDS Driver, have this extension.
OSDS data files, stored by numerous Drivers, also use this extension.

6 Configuration File Usage

MICAS-X can take on a wide range of personalities or functionality, as determined
by the configuration file that is used. A single user or system can create multiple
configuration files, and select which one is run depending on the experiment or process
being carried out.

The Configuration Editor (run either as a Utility inside MICAS-X or as a stand-

alone program in Windows or a VI in LabVIEW) can be used to define the start-up
configuration file. Pressing the button "Mark as Start-up File" will write the name of the
configuration file currently being edited to the “Config to Load.txt” file, causing it to be
used the next time MICAS-X is started. In addition to using the “Config to Load.txt” file
to determine which configuration MICAS-X uses when it starts, it is also possible to
create shortcuts to MICAS-X which tell the program to load a specific configuration, and
which thus over-ride the “Config to Load.txt” setting. The directions for creating
shortcuts differ depending on whether MICAS-X is being run as an executable or in
source code.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 27

 Note that the configuration file name “MICAS-X RunTime Configuration.ini” is a
reserved name and should not be used to name a user-defined configuration file. This
file is used by MICAS-X to track dynamic configuration parameters, which can be
changed, saved, and used while MICAS-X is running. (Normal configuration information
is only read when MICAS-X starts, so changing those configuration parameters does not
alter how MICAS-X operates while it is running, but only when it next starts.) Examples
of dynamic configuration parameters include the location of the MICAS-X window on
your computer desktop. As the user moves MICAS-X around, the program remembers
where it has been placed by writing that location to the “MICAS-X RunTime
Configuration.ini” so that it will be placed in that same position the next time it is run.
Another difference between normal configuration parameters and those in the “MICAS-
X RunTime Configuration.ini” are that the latter are used with any and all MICAS-X
configurations, and hence they are more global parameters that define how MICAS-X
acts in general, but not how any one configuration acts.

 As of version 1.5.0 of MICAS-X, a CRC check is placed in the configuration files by
the configuration editor. This check can be used to identify configuration files that have
become corrupt or were edited by hand outside of the Configuration Editor, as explained

in section 7.2. It is also possible to configure a Backup Configuration file which will be
automatically used if the Start-up configuration file is found to have an invalid CRC. The

Backup Configuration file is described in section 7.3. This feature cannot be used when
a shortcut is used to select a configuration file, as described above. It only works when
the “Config to Load.txt” file is used to select the configuration file.

6.1 Shortcuts for MICAS-X.exe Executable

 To create a shortcut for the MICAS-X.exe program that loads a specific
configuration file, use Windows Explorer to navigate to the MICAS-X.exe file, which
should be located in C:\Program Files\MICAS-X or C:\Program Files (x86)\MICAS-X. Right
click on the file and select "Create Shortcut". Drag this shortcut to the desktop or to
some other desired location. Right click on the shortcut and select "Properties". The
Target parameter must be edited according to the following format:

"C:\Program Files\MICAS-X\MICAS-X.exe" "Configuration File.ini"

E.g. the first parameter must be the full path to the MICAS-X.exe program, in
quotes. The second parameter must be the name of the start-up configuration file, in
quotes. Note that for the second parameter, only the name of the configuration file
should be used, not the full path. The configuration files must be located in
C:\OCC\MICAS-X Support.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 28

6.2 Shortcuts for MICAS-X.vi in Source Code

 To create a shortcut for the MICAS-X.vi VI and have it run inside LabVIEW and
load a specific configuration file, use Windows Explorer to navigate to the main MICAS-X
VI. This should be located at C:\MICAS-X\MICAS-X.vi. Right-click on the MICAS-X.vi and
select "Create Shortcut". Then drag the resulting shortcut to the desktop or some other
desired location. Right click on the shortcut and select "Properties". The Target
parameter must be edited according to the following format:

"C:\Program Files\National Instruments\LabVIEW 2015\LabVIEW.exe" "C:\MICAS-
X\MICAS-X.vi" -- "Configuration File.ini"

E.g. the first parameter must be the full path to LabVIEW, in quotes. The second
parameter must be the full path to the MICAS-X.vi in quotes. The third parameter must
start with two dashes, followed by a space, followed by the name of the desired
configuration file, in quotes. For this shortcut to work, LabVIEW must not be started or
loaded before the shortcut is run. (E.g. if LabVIEW is running, it must be exited first.) In
addition, the "Run When Opened" option must be selected for the MICAS-X.vi in the
Execution options tab of the VI properties. Note that for the third parameter, only the
name of the configuration file should be used, not the full path. The configuration files
must be located in C:\OCC\MICAS-X Support.

6.3 Configuration Files for MICAS-X-RT

MICAS-X-RT uses three configuration files. All three are stored in the C:\OCC\MICAS-
X Support directory on the RT machine. The file named MICAS-XRT.ini is the current,
active configuration. This may be manually loaded onto the RT machine by file transfer,
or it can be sent down to the RT machine when the MICAS-XRT Driver is run on a host
machine. When it is sent down from the host, the MICAS-XRT Driver first reads the XRT
configuration file on the host machine, then sends just the contents of that file as a
string to the RT machine. Upon receipt, MICAS-X-RT saves the contents in the file MICAS-
XRT.ini, along with an additional entry that stores the name of the original configuration
file. (Note that if the configuration file is manually transferred to the RT machine, this
additional entry will not be present. The only use for this entry is to display the original
name of the configuration file on MICAS-X-RT when it is run in interactive mode.)

If the Save As Auto-Load parameter in the Program Parameters is true, the
configuration file is saved as Auto-Load.ini on the RT machine. Whenever this
configuration file is present as MICAS-X-RT starts running, it is loaded automatically. E.g.
no interaction from the host is needed to configure and acquire data with MICAX-X-RT in
this case.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 29

The third configuration file is named Restart.ini. MICAS-X-RT uses this as a
temporary configuration file whenever restarting itself to load a new configuration. As
soon as this file is read in as the current configuration, it is deleted.

7 Configuration Editor

 Before using MICAS-X, you must have or create a Configuration File that defines
what features MICAS-X will have. This section explains how to use the Configuration
Editor to create your configuration files. Proceed to the “Using MICAS-X” section of the
manual if you already have configuration files and are interested in using MICAS-X.

 To launch the configuration editor from within MICAS-X, go to the Utilities Menu
and select “Configuration Editor”. The Configuration Editor.vi VI can also be launched
within LabVIEW, or the Configuration Editor.exe program can be run directly from
Windows.

 As with all Utilities, the Configuration Editor only runs on Windows, not in
MICAS-X-RT. It is used to edit MICAS-X-RT configuration files, however.

 Note that most MICAS-X Utilities do not have any related configuration
parameters. However, as of version 3.2, some Utilities do have configurable parameters.
If any Utility is installed on your system which supports configuration parameters, then a
Utilities selection will appear at the bottom of the Components list. When Utilities is
selected, the configurable Utilities will appear in the list below.

7.1 Using the Configuration Editor

 In the top-left area of the window, select the “Read a File” button to select a file
to open in the configuration editor. This will present a file dialog for the folder “MICAS-X
Support”, from which you can pick an existing configuration file to edit.

 To the right of the “Read a File” button, two indicators display the file path of the
file being edited and the start-up file (the configuration file that will run the next time
MICAS-X is run). Next to each of these boxes are options to “Mark as Start-up File”
(which saves the current configuration as the start-up configuration) and “Read Start-up
File” (which reads the current start-up file given in the box to the left into the
Configuration Editor). The “Save As” button allows the operator to save the currently
edited configuration under a new file name. The “New” button will create a clean
configuration with only default values. When this button is pressed, a file dialog will be
presented so that the operator can name the new configuration file.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 30

 Note that the Start-up File refers to MICAS-X, and is not used for MICAS-X-RT. To
define a start-up configuration file for MICAS-X-RT, one can use a file transfer program to
put a configuration file named “Auto-Load.ini” in the “C:\OCC\MICAS-X Support” folder
on the RT computer. Or one can use the “Save as Auto-Load” option in the MICAS-XRT
Driver to have MICAS-X send a configuration file down to the RT system and have it
saved to be used automatically each time the RT system is booted.

 The “Version” box lists the version of the MICAS-X Configuration Editor currently
being used. Finally, the “STOP” button will immediately stop and close the configuration
editor window. Make sure to save all changes before pushing “STOP.”

 On the left-hand side of the screen are three lists of options. The first, labeled
“Target”, allows you to define which type of configuration file you are editing. When
“Windows” is selected, the configuration file is intended to run in MICAS-X on Windows.
When “Real-Time” is selected, the configuration file is intended for MICAS-X-RT on a
LabVIEW Real-Time platform. Although either program can attempt to load a
configuration file with either Target specified, an error message is generated if the Target
does not match the platform being used. In addition, when the proper Target is selected,
certain parameters are presented that are relevant to that Target and which may not
work correctly on the other Target. E.g. if a Windows configuration file is loaded onto a
Real-Time system, it is likely that the system will not operate correctly, as not all the
parameter will have been set appropriately for the RT system.

 If the Target parameter is changed, it is important to force a save in the
Modules/MICAS windows to make sure that the Target selection is remembered. For
example, change the Update Time (ms) parameter by a value of 1, then back to its
former value. The Save button will then flash and become active, allowing you to save
the Target selection.

 The second list, labeled “Components,” allows you to select which part of the
MICAS-X program you wish to edit. Your selection of either Modules, Instruments,
Drivers, Displays, or Tools will change the contents of the second list. The third list will
allow you to select the specific module you wish to independently configure. Be sure to
save all your changes in one component editor before clicking to select another
component.

 When a component is selected in the list to the left, an editor window specific to
that component is loaded on the right side of the window. A series of buttons near the
upper right allows the operator to save changes to the configuration. The right most
button is named “Save” and will flash red if any changes have been made that have not
yet been saved. If another component is chosen without first pressing this save button,

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 31

any changes made will be lost. To the left of the Save button is a Revert button.
Pressing this button will revert all the configuration parameters in the current window
back to the values contained in the configuration file being edited. E.g. any changes that
the operator has entered will be removed. Further to the left is a button labeled “Reset
to Default”. If this button is pressed, all the displayed configuration parameters will be
initialized to their default values. Those default values will not be saved to the
configuration file until the Save button is pressed. Finally, if the configuration editor is
being run inside MICAS-X, and if MICAS-X is in Debug mode, a fourth button appears
even further to the left. This button is labeled “Save as Defaults”. When this button is
pressed, the current values of the configuration parameters are saved to a special
configuration file that defines what the default values for the component should be.
This button is not intended for use in normal operation.

7.2 Configuration File CRC

 A Cyclic Redundancy Check (CRC) was added to MICAS-X configuration files in
version 1.5.0. This value serves as a way to ensure the integrity of the configuration file.
The presence of the CRC allows the program to detect when a configuration file has
become corrupted, or when a configuration file was edited by hand (rather than by using
the MICAS-X Configuration Editor). Since manual editing of a configuration file is error
prone, being able to detect when someone has edited a configuration file can be a
valuable form or insurance.

 Any configuration files created with version 1.5.0 or later of MICAX-X should have
the “Require CRC” option (on the Security configuration page) set to True by default.
Configuration files created with older versions of MICAS-X will not have this parameter,
so when they are read in, it will default to False. The CRC will only be examined for
configuration files for which this parameter is True. Thus, if you have a configuration file
that was created in an older version of MICAS-X, and wish to apply this level of
protection in version 1.5.0 or later, you should read the configuration file into the
MICAS-X Configuration Editor and re-save it. This will apply a valid CRC to the
configuration file.

 If MICAS-X is run with the “Require CRC” parameter True, and the CRC in the
configuration file is valid, no action will be taken. If the CRC does not match the
contents of the configuration file, or if it is missing, error 7033 will be generated. Note
that even when error 7033 is generated, MICAS-X will continue to run. If you are
concerned about the integrity of your configuration file and want to know if this error is
present, it is recommended that you set up an Alarm that will post an Alert for error
7033. This Alarm could also be configured to turn off acquisition or even exit MICAS-X if

so desired. See section 7.5.13 for information on Triggers and Alarms.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 32

 The “Require CRC in Config File” parameter is only available in MICAS-X for
Windows, not MICAS-X-RT.

7.3 Backup Configuration File

 An additional safety mechanism that works in conjunction with the Configuration
File CRC is the Backup Configuration File. This is defined in the Security page under the
“Modules” section of the configuration editor. When a Backup Configuration File is
defined, its name is stored in a file named “Backup Config.txt”. This file and the Backup
Configuration File itself must both be located in the MICAS-X support directory.

 If a Backup Configuration File is defined, and the CRC of the Startup
Configuration File is found to be invalid, the file name in the “Backup Config.txt” will be
automatically copied to the “Config to Load.txt” file, and that configuration file will then
be used. Error 7034 will be reported, so that the operator is aware of the configuration
file substitution. This leaves the original Startup Configuration File intact, so that it can
later be examined to determine why the CRC check failed. Also note that if the “Config
to Load.txt” and “Backup Config.txt” files contain the same file name, no configuration
file substitution is performed.

 Care should be taken when managing the Backup Configuration File. If the
Backup Configuration File is not maintained and properly updated, then if the Startup
Configuration File is unusable, MICAS-X will start with an out-of-dated and possibly
incorrect Backup Configuration File.

 The Backup Configuration File is only available in MICAS-X for Windows, not
MICAS-X-RT.

7.4 Modules

7.4.1 MICAS

7.4.1.1 MICAS-X for Windows

 The MICAS configuration page allows the configuration of much of the main
functionality of the MICAX-X program. On this configuration page one selects which
Displays and Instruments are included in the MICAS-X system, as well as how the options
above the tab structure in MICAS-X are configured.

 In the top left-hand corner of the window, enter the name you wish to call the
system you are editing under the “System name” box. This name will be used to label
the first tab of the MICAS-X display, which is otherwise named “Control”.

 You can determine where the collected data is stored using the “Data Folder”
parameter. This is set to “C:\OCC\MICAS-X Data” by default.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 33

 The “Acquire on Start Up” option allows you to turn on and off the ability to
immediately acquire data when the program first starts.

 The “Record on Start Up” option allows you to turn on and off the ability to
immediately record data upon start-up of the program.

 The “Max History Depth” option allows you to select the maximum size of the
data buffer of data displayed on time-series graphs. The buffer size of data displayed in

time series graphs depends on several parameters and conditions. See section 9.5 on
the time-series graphs.

 Below the “Max History Depth” option is a switch labeled “Read 2 files of History
data” or “Only read 1 file of History data.” This parameter affects how much history data

is available in time-series graphs, as described in section 9.5 on the time-series graphs.

 The “Displays” section of the MICAS Module defines which Display modules are
included in the current configuration. The “Available Displays” list to the far right shows
all the Displays that can be added to the current configuration. Note that some Displays
can be added more than once (those with the .vit extension), whereas others can only
be added once (those with the .vi extension). Thus if a .vi Display is already added to the
current configuration, it will no longer be listed in the Available Displays list.

 To add a Display to the current configuration, double-click on the desired Display
in the Available Displays list. The Displays present in the current configuration are listed
in the “Displays” list further to the left. To remove a Display from the current
configuration, press the red button on its row. Note that if more than 5 Displays are
present in the current configuration, the scroll bar on the “Displays” list can be used to
scroll up or down through the list of Displays.

 Create a prefix for the Display by typing in the desired prefix into “Display
Prefixes” in the appropriate row. Prefixes cannot contain spaces and should be kept
short. Be sure to use prefixes if a Display module is being used more than once (e.g. a
.vit Display). The prefix allows MICAS-X to distinguish between the multiple instances of
the Display and keep track of which is which. The Display name is automatically used as
the “Tab Name”, but this can be changed according to your preferences to give the
Display tab in MICAS-X a specific label.

 If the “Outside?” check box is marked, the Display will be instantiated outside of
the main MICAS-X window, and will appear as its own window rather than in a MICAS-X
tab.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 34

 The “Instruments” section of the MICAS Module defines which Instrument
modules are included in the current configuration. The “Available Instruments” list to the
far right shows all the Instruments that can be added to the current configuration. Note
that some Instruments can be added more than once (those with the .vit extension),
whereas others can only be added once (those with the .vi extension). Thus if a .vi
Instruments is already added to the current configuration, it will no longer be listed in
the Available Instruments list.

 To add an Instrument to the current configuration, double-click on the desired
Instrument in the Available Instruments list. The Instruments present in the current
configuration are listed in the “Instruments” list further to the left. To remove an
Instrument from the current configuration, press the red button on its row. Note that if
more than 5 Instruments are present in the current configuration, the scroll bar on the
“Instruments” list can be used to scroll up or down through the list of Instruments.

 Create a prefix for the Instruments by typing in the desired prefix into
“Instrument Prefixes” in the appropriate row. Prefixes cannot contain spaces and should
be kept short. Be sure to use prefixes if an Instrument module is being used more than
once (e.g. a .vit Instrument). The prefix allows MICAS-X to distinguish between the
multiple instances of the Instrument and keep track of which is which. The Instrument
name is automatically used as the “Tab Name”, but this can be changed according to
your preferences to give the Instrument tab in MICAS-X a specific label.

 Each Instrument can optionally have a Display of its own. The “Display?” check
determines whether MICAS-X will open the Instrument VI's front panel as a Display. If
the “Outside?” check box is marked, the Instrument Display will be instantiated outside
of the main MICAS-X window, and will appear as its own window rather than in a MICAS-
X tab.

 The section in the lower left-hand part of the window allows you to configure up
to twelve options that can appear along the top of MICAS-X. (Note that the 8th option
will only be available if there are no Alarms configured, since the Alarm Status indicator
appears in the same space as the 8th button. The 9th through 12th options appear on a
second line, in line with the tab buttons. These options should only be used if few
enough tabs are defined in MICAS-X to allow free space where these options appear.) To
configure an option, select the number of the option you wish to edit using the arrows
next to the “Option Number” control. Select the type of Option using the Option drop-
down menu. Use “None” to have the program ignore that option. Other options that
can be select are Command, Indicator, Controller, T/F Indicator, Switch (T/F Controller),
Enum List Indicator, and Enum List Controller. Note that Indicators, Controllers, Enum

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 35

List Indicators, and Enum List Controllers take up the space of two options, since they
require space for their channel label. Thus these options are available only for option
numbers 2, 4, 6, 8, 10 and 12. This is important to keep in mind when editing options 1,
3, 5, 7, 9, and 11. For example, if option 2 is set to Controller, the option 1 will be forced
to be “none”. In this case, if you change option 1 to another type of option, it will
automatically revert to “none”.

 The Command option creates a button which can issue any Command when it is
Turned On and any other Command when it is turned Off. The left column of
parameters determine how the button will act when it is turned from False to True, and
the right column determines what will happen when it is turned from True to False.

 Check the “Auto-Reset” button if the button should automatically switch back
from True to False after the program reads it. As an example, a button that controls
whether the program is in Acquire mode would not use auto-reset, as the button would
stay True or False until the operator changes it. A button that starts a Sequence could
use the Auto-Reset function, since once the Sequence is started, the button would
automatically revert back to False so that the operator could press it again when
needed.

 “False Text” shows the text that will be shown when the button hasn’t been
pushed, and “True Text” shows the text that will be shown when the button has been
pushed. In these fields, add a short text string that indicates to the operator what the
button will do. The remaining parameters are used to define the behavior of the button.
Use these parameters to assign MICAS-X Commands to the False-to-True button push
and the True-to-False button push. When a Command is selected, the string and value
parameters below the Command are enabled or disabled depending on the parameters
that the Command uses.

 Indicator options display the current value of any one channel. Controller
options present the value of one controller (output) channel and allow the operator to
change it.

 For both T/F Indicators and Switches, the associated channel name is used as the
button label. T/F Indicator options are used to display the value of a channel when that
channel naturally can have only two values. Normally a value of 0 is equated with False,
and 1 (or any non-zero value) is equated with True. However, the “False Value” option
can be used to explicitly specify the value that will be displayed as False. A Switch option
(T/F Controller) is similar and is used when a controller (output) channel naturally can
take on only two values. The “False Value” and “True Value” parameters specify the
numeric value assigned to the channel whenever it is set to False or True. If another

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 36

value (besides the False or True Values) is assigned to the channel by another process
within MICAS-X, the channel name displayed on the button is bracketed with asterisks to
indicate that the channel currently has an out of range value.

 Enumerated Lists are used to assign a set of text labels to a finite number of
channel values. For example, a “System State” channel might use the value 0 for Off, 1
for Stand-by, 2 for Running, and -1 for Error. Enum List Indicators and Enum List
Controllers allow one to define enumerated lists for displaying the value of a channel

(Indicators) or setting the value of a channel (Controllers). See Section 7.4.12 for
information on configuring Enumerated Lists.

 The “Require CRC” parameter determines whether or not the program will
generate an error if it finds that the configuration file CRC (Cyclic Redundancy Check)
value is invalid or is missing. This feature allows MICAS-X to detect when the
configuration file has been corrupted accidentally or has been edited by hand, rather
than with the MICAS-X Configuration Editor. Configuration files created with versions of
MICAS-X earlier than 1.5.0 do not contain this feature, so this parameter should be set
to False for such files. It is recommended that this parameter be set to True for

configuration files created or edited with versions of 1.5.0 or later. See section 7.2 for
more information.

 You can add notes about the configuration in the “Notes” section at the bottom
of the window. These notes are for your own documentation purposes, to remind you
of how you configured things and why. They are not used within MICAS-X and are only
saved within the configuration file. Each configuration window for each module
contains a Notes field that can be used to record notes about that module's
configuration.

 Additional configuration options that are general to the entire MICAS-X program
can be found on the Advanced configuration. Some of the options on the Advanced
window were previously on the MICAS configuration.

7.4.1.2 MICAS-X-RT

The MICAS configuration page for MICAS-X-RT has fewer options than that for
Windows, since there are many fewer user-interface options on the RT platform. The
“Save as Auto-Load?” option, if checked, will ensure that when MICAS-X-RT next uses
the configuration file, it will save it with the name “Auto-Load.ini”, and that configuration
file will thereafter be used automatically to start and configure MICAS-X-RT whenever
the RT system is booted up.

The Acquire on Start-up and Record on Start-up parameters work as described
above in the Windows section, as does the Notes parameter.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 37

The Enable RT Watchdog parameter adds another level of robustness to the
MICAS-X-RT program. On NI RT platforms, a hardware-based Watchdog is usually
included. When enabled, this hardware circuit is ready to reboot the RT computer if the
software fails to check in on a regular interval. MICAS-X-RT is designed to refresh the
Watchdog once a second, with a two second expiration time. Thus if MICAS-X locks up
and fails to refresh the Watchdog for over two seconds, then if this parameter is
enabled, the RT system will be rebooted.

The Instruments parameters also function as described in the section above

(7.4.1.1), except that the Instruments available are those in the “Instruments RTX”
folder. This folder only contains MICAS-X Instruments that have been designed and
verified to be compatible with MICAS-X-RT.

7.4.2 Acquisition

 The Acquisition Module allows the user to define which Drivers to use within
MICAS-X. Driver are shown in the drop-down lists in the Drivers array. Use this list to add
Drivers being used in the current configuration. Note that Drivers that end with “.vit”can
be used more than once in a configuration. If a Driver ends with .vi and not .vit and you
attempt to add it to the Drivers list more than once, the program will remove the new
instance from the Drivers list.

 If a specific Driver is only used once in the MICAS-X configuration, the Prefix is
optional. If the same Driver is used more than once in a configuration, each instance
must have a unique Prefix. (One such Driver can still have a blank Prefix, as long as no
other instances of the same Driver also have a blank Prefix.) Prefixes should be short and
cannot contain spaces. Create a prefix for the Driver by typing in the desired prefix into
“Driver Prefixes” in the appropriate row. In addition to allowing MICAS-X to uniquely
identify each instance of a Driver, the Prefix is prepended to each Channel of the Driver,
so that the Channels from multiple instances of the same Driver are uniquely named.

 The “Acq Loop” array to the right of the Prefixes allows you to change the
Acquisition Loop number assigned to the Driver. Assigning drivers to different acquisition
loops allows asynchronous acquisition based on multiple different acquisition rates.
Utilizing multiple loops can be helpful in several situations. If one Driver is reading data
from a streaming device (e.g. one that continuously sends data at a fixed rate, without
being asked) at, for example 10 Hz, and another Driver reads data from another device
at 1 Hz, putting the two Drivers in different Acquisition Loops allows for each device to
be read at the appropriate rate. Another example is when one Driver is reading data
from a streaming device at 1 Hz, and another Driver is controlling a data acquisition card
at 1 Hz. The first Driver's 1 Hz operation will be tied to the external device's 1 Hz clock,
whereas the second Driver will be tied to the computer clock for timing the data
acquisition device. These two clocks will inevitably drift relative to each other. Although

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 38

they are both operating at close to 1 Hz, putting them in the same Acquisition Loop will
eventually cause an error when the two devices become out of synchronization.

 You can delete any driver by pressing the red delete button in the appropriate
row.

 Below “Drivers” are options to change cycle times. This control determines the
timing of each Acquisition Loop. This array will have a number of elements determined
by how many Acquisition Loops are defined in the Drivers configuration above it. If the
Device Timed checkbox next to a Cycle Time is not checked, then the loop timing is
determined by the MICAS-X software, and the Cycle Time is milliseconds per loop. If the
Device Timed checkbox is checked, the Cycle Time is a millisecond delay, as discussed
below.

 If the Device Timed checkbox next to the Cycle Time is marked, the specified loop
cycle time will time will be determined by the device assigned to it, rather than by
software timing by the MICAS-X program. Software timed Acquisition Loops should be
used for devices and Drivers which respond to a request for data. E.g. if one is using the
NIDaqDI Driver to acquire digital input data from an NI device, this Driver should be
assigned to an Acquisition Loop that is software timed. If the Cycle Time is set to 1000,
MICAS-X will ask for data from this Driver every 1000 ms. However, if a Driver is being
used such as GPS, which streams data once a second without needing to have MICAS-X
ask for the data, then the Device Timed check box should be marked. In this case, the
Acquisition Loop cycle time will be determined by the rate at which the device sends
data. Note that when the Device Timed check box is marked, the Cycle Time parameter
is actually used as a Delay Time in milliseconds. Thus, for the example of a GPS sending
data once every 1000 milliseconds, a Delay Time of 500 milliseconds may be
appropriate. In this case, MICAS-X will ask for data from the GPS, wait until data is
available, then wait 500 milliseconds before requesting more data. The delay time thus
acts to make the loop more efficient, by not having the Acquisition Loop ask for data
until it is almost time for the data to be available.

 Another way to view the difference between software-timed Acquisition Loops
(Device Timed unchecked) and Device Timed Acquisition Loops is as follows. For a
software-timed loop, MICAS-X uses its internal clock (the computer clock) to determine
when it gathers data from the Driver(s) assigned to it. In the example of a 1000 ms Cycle
Time, MICAS-X will note the time when the Acquisition Loop first starts, and will
thereafter ask for data a 1000 ms intervals after that time. E.g. it will always try to
request data at integer multiples of 1000 ms added to the time of its first acquisition. As
an example, assume that the first data point was acquired at exactly 9:00 am and 0.0
seconds. MICAS-X will then try to acquire data at 9:00:01.0. If the Driver does not

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 39

respond quickly enough, and data is not acquired until 9:00:01.5, the Driver will still
schedule the next data point for 9:00:02.0, not for 9:00:02.5. E.g. it will always try to
acquire data based on when the first data point was acquired, plus an integer number of
acquisition cycle times.

 Device Timed Acquisition Loops defer instead to when the device or Driver
makes data available. Take as an example a gas analyzer that streams data once every
2000 ms, without requiring MICAS-X to ask for the data. In this case, the Device Timed
checkbox should be marked, and the Cycle Time (which is now used as a Delay Time)
might be set to 1500. At 9:00:00.0, MICAS-X begins acquiring data. It waits until the gas
analyzer presents data, which may happen at 9:00:00.2. It then waits for the Delay
Time, or until 9:00:01.7. At that time, it again looks to the driver for data, which should
arrive at 9:00:02.2. In this example, the Acquisition Loop timing is determined by the
device, and the Delay Time is used to make MICAS-X more efficient by not looking for
data during the entire cycle time.

 Only one streaming device should be assigned to any one Acquisition Loop. The
Acquisition Loops for each streaming device should be set to Device Timed. Device
Timed Acquisition Loops can include other Drivers that are not for streaming devices.
E.g. a Device Timed Acquisition Loop for a GPS, acquiring data from the GPS every 1
second, could also acquire data from a NIDaqDI Driver once a second.

 Finally, it should be noted that some streaming devices will not respond well to
having “Acquire” turned off in MICAS-X. E.g. MICAS-X has the ability to turn Acquire on
and off, which determines whether or not the Drivers are queried for data. For most
streaming devices, once the device starts sending data, turning Acquire off does not stop
the device from sending further data. In this case, when Acquire is turned back on,
there may be buffer overflows or other communication errors. If MICAS-X is configured
to communicate with these types of devices, it may be advisable to configure it so that it
is always in Acquire mode. To do this, the Acqurie at Start-up checkbox in the MICAS
configuration should be checked, and any “Acquire” button that might be configured
should be removed.

 The Acquisition module works in both MICAS-X for Windows and MICAS-X-RT.

7.4.3 Channel Lists

 Channel Lists are lists of Housekeeping Channels and can be used for several
purposes. Often, for a complex MICAS-X configuration, the number of Housekeeping
Channels can become fairly large. When selecting a channel to display on a time-series
graph, for example, it can become difficult to quickly find the desired channel amongst

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 40

the list of all the channels. In this case, one can create a Channel List of just the
important channels that one wants available on the time-series graph. Another use for
Channel Lists is to define a set of channels that should be written to a .csv data file.

 The “Channel Lists” array lists the channel lists that have been created for the
current configuration. You can delete a channel list by pressing the red delete button to
the right of the appropriate channel list. To create a list, press the green “New” button
located at the top and to the right of the delete buttons. The new channel list will be
given a default name of “New List”. To edit the list’s name, highlight the name in the
“List Name” box in the center of the window and type in a new name.

 Once a list has been created, you must define the Channels in that List. First,
highlight the list in the Channels Lists box on the left. Any Channels already in this List
will now be displayed in the Channels array in the center. Existing Channels can be
removed from the List by pressing the red Delete button to the right of the Channel. The
Insert button will add another channel at the desired location. Once a new Channel has
been inserted, click on the name of the new channel to see a drop-down menu of all
available channels, from which the desired channel may be selected.

 Additional buttons to the right allow you to delete all the channels in the current
list, set the current list to a list of all existing channels, or set to add all Controller
(output) Channels to the current list.

 Further to the right are three controls that allow you to add Channels to the
current List which are related to any specific Driver. Use the Driver control to select
which Driver you want to add Channels from. Then press either the “Add All Driver
Channels” or “Add All Driver Controllers” to add the relevant channels to the currently-
highlighted Channel List.

 Directly under the Channels list in the center is the “Sort This List” button. This
button sorts the channels in the above array alphabetically.

 Note that, in addition to any lists you create, MICAS-X will always have a list
named “All” which includes all MICAS-X channels.

 Channel Lists work in both MICAS-X for Windows and MICAS-X-RT.

7.4.4 File Writer

 The MICAS-X File Writer allows you to define any number of data files MICAS-X
writes using the Housekeeping Channels. The Files cluster of parameters is an array of
file definitions. A new File can be added by incrementing the number on the upper left

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 41

hand side of this cluster, then entering the parameters in the new, blank definition.
Change the Prefix (characters prepended to the file name) and Suffix (characters
appended to the file name) of the file in question by entering the desired names into the
“Prefix” and “Suffix” boxes, respectively. Enter the desired file extension in the
“Extension” box. (Note that .csv is recommended for Delimited Text files, and .itx is
recommended for Igor .itx files.) To choose how a file is delimited, select the option you
prefer using the “Delimiter” parameter (comma, space or tab separations). (The
“Delimiter” parameter is used only for Delimited Text files and is ignored for Igor .itx
files.)

 The “Format” parameter acts as a format specifier, which defines how data will
be written into the file. “%#g” is recommended, as this will use automatic formatting.
See LabVIEW Help for more information on other types of specifiers. Note that when
MICAS-X writes a value that it thinks is a LabVIEW time-stamp to a file, it over-rides the
format specifier and uses “%.3f”, which ensures that the time-stamp is written with
sufficient resolution to preserve sub-second information. This is applied to data values
in the range 3.4e9 to 4.2e9, since LabVIEW stores time in seconds since 1904.

 The “Channel List” parameter determines which of your preset channel lists will
be written to the file in question. Use the arrows to select which list will be used.

 The “Start a New File Every” parameter allows you to choose how often a new
data file is created. Select a time between every minute and two days (or never, if you
never want MICAS-X to automatically restart your data file). The “Acq Loop” parameter
determines which acquisition loop writes the file in question. Different loops can run at
different rates, but whenever a loop writes to a file, it gathers all the most recent Driver
data for all the channels in its Channel List.

 Use the “File Type” parameter to define the file format used to write the data
file. Currently-supported options are Delimited Text (e.g. .csv files) and Igor .itx. The .itx
file type is used by the Igor data analysis program. Note that other File Writer
parameters that are not relevant to the selected File Type will be greyed-out.

 When the Igor .itx file type is selected, the Channel names are written to the file
as Wave names. In order to provide compatibility with Igor, Channel names will be
altered in certain ways. The characters “!@$^&(),.<>/?;':”\|”, which are not allowed in
Igor Wave names, are replaced with the underscore character “_”. The character “%” is
replaced with “pct”, and the character “#” is replaced with “Num.”. In addition, certain
Igor reserved words are altered by added “_X” to them. These include “Time”, “Debug”,
and “Sec”. Note that not all Igor reserved words are currently filtered, so it is important

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 42

to test your channel list by creating an Igor .itx file and reading it into Igor. You may need
to alter some MICAS-X channel names in order to get this file to work properly.

 The “Wave Flags” and “Igor Commands” parameters are only used with the Igor
.itx file type. “Wave Flags” can be used to set various Igor options. The most common
flags to use are \O to have Igor overwrite any existing waves that are already loaded that
have the same name as waves in the file, and \D to tell Igor to make the new waves as
double-precision. See Igor documentation for additional flag information. Similarly, the
“Igor Commands” is used to add Igor instructions at the end of the file. These can be
used to automatically format and graph the data when it is loaded in Igor, for example.

 The “Custom Path” parameter allows you to define a specific destination for the
file being configured. If this is left blank, the default data directory is used. Otherwise,
the data file is written to a date-named directory inside the path specified here.

 Use the Write Frequency (Once Every n Loops) parameter to deteremine how
often data is written to the file. Normally, this is set to 1, which causes data to be
written on every iteration of the Acquisition Loop defined for the file. Setting this to 2
causes the data to be written every other time through the loop. As a further example,
if the Acquisition Loop has a cycle time of 1000 ms (1 sec) and the Write Frequency is set
to 60, the data will be written to the file once a minute. Note that these file writes are
not synchronized to an even second or minute. E.g. in the above example, if the
program starts at 5 seconds after a minute, data will be written to the file at every
hr:mn:05 seconds, not at every hr:mn:00 seconds.

 Note that the .tdms file, which is continuously being saved in the background, is
written by Acquisition Loop 0. Thus the .tdms file will have a sampling rate determined
by the Acquisition Loop 0 cycle rate. If Acquisition Loop 0 is running at 1 Hz and one
Driver is running in Acquisition Loop 1 at 10 Hz, it is important to realize that the .tdms
file will only record 1 out of every 10 data points from that Driver. If it is necessary or
useful to save all the data points for that Driver, two options are possible: 1)
Reconfiguration the acquisition so that the fast (10 Hz) Driver is in Acquisition Loop 0
and configure that loop to run at 10 Hz, and configure the other, slower Drivers to run in
another (or multiple) acquisition loops at their own rates. Using this method, the .tdms
file will be written at 10 Hz and all the fast Driver data will be recorded therein. Note
that all the 1 Hz Driver data from the other loops will be written to the .tdms file at 10
Hz, creating 10 duplicate values for each value read in. 2) Leave the 10 Hz Driver in
Acquisition Loop 1, and set up a .csv file to write a Channel List of just this Driver's data,
and configure that File to be written by Acquisition Loop 1. In this case, the .tdms file
will only have 1 Hz data, which is likely sufficient for data review and time-series graphs,
but the higher frequency 10 Hz Driver data will all be saved to the .csv file.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 43

 The “Delete” Button to the right of the “Files” cluster will delete the File
definition currently shown.

 The File Writer module works in both MICAS-X for Windows and MICAS-X-RT.

7.4.5 Control Tab

The Control Tab module of MICAS-X Configuration Editor allows you to configure
how the Control Tab looks and acts while the program is in use. The first box, “Control
Tab Name,” allows you to rename how the Control Tab appears when MICAS-X is being
run.

The “Controllers” cluster is an array that defines which Controllers are available

to use on the control tab. Use the Insert and Delete buttons to add and remove
Controllers from the list. Click on the name of a controller to access the list of all
available Controllers and select the one desired.

To the right of the “Controllers” cluster, there is an option to “Set to All

Controllers,” which will set the above list to all Controllers defined within MICAS-X. The
“Delete All” button will remove everything you have added to the list.

The “Switches” cluster is an array that defines which Controllers are presented

on the Control tab as switches. Controllers that logically have only two values (on/off,
True/False, 1/0, etc.) are logical candidates for presentation as Switches on the
Controllers tab. Add, remove, and select which controllers are used as Switches the
same way as described above for Controllers.

In addition, the Off Value and On Value need to be defined for Switches. The Off

Value defines what value the Controller channel will be set to when the switch is turned
to the Off (down) position. This is normally 0. The On Value determines the value the
Controller channel will be set to when the switch is turned On. This is often 1, but other
values could be used as appropriate. For example, an analog output channel could be
used as a digital control channel by making the On Value 5, so that the Switch would
change the channel between 0V and 5V.

The “Sequences” cluster is an array that defines which sequences are presented
on the Control tab. Add, remove, and select Sequences the same way as described
above for Controllers.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 44

The “Triggers” cluster is an array that defines which triggers are presented on the
Control tab. Add, remove, and select Triggers the same way as described above for
Controllers.

The “Graph” parameters allow you to choose whether or not a time-series graph

is displayed in the Control tab and how it is configured. Toggle “Show Graph” to
determine if the graph will be shown in the tab. When the Graph is selected for the
Control Tab, it will appear at the bottom of the tab, and the Controllers, Switches,
Sequences and Triggers lists will only occupy the top half of the tab. If the Graph is not
selected, those lists can extend all the way to the bottom of the tab, depending on how
many items they contain. In either case, if they contain more items than fit in the
allotted space, a scroll bar appears so that all the items in the list(s) can be viewed as
needed.

The “Left Axis” switch allows you to select Auto or Manual scaling on the left axis

of the graph when MICAS-X first starts. The “Right Axis” switch functions like the “Left
Axis switch.” “Graph Background” allows you to select the color of the background of the
graph. “Left List” and “Right List” allow you to choose which lists of channels are are
used to define the channels available to display on your graph’s left and right sides,
respectively. “Left Channel” and “Right Channel” determine which channels initially
appear on the left and right parts of the graph, respectively. “History Length”
determines how far back the graph displays data. (Note that “Manual” and “From
Pointer” cannot be selected as an initial value for this parameter. “All” will be used
instead if “Manual” or “From Pointer” if either is the initial configuration value.) “Left
Points” and “Right Points” determine whether points are displayed at each data point (as
opposed to just plotting a line between the data points).

The “Channel List” control defines which channel list will determine the channels

whose values are displayed in the table on the right of the control tab.

Below the “Channel List” parameter is a switch used to select “Show Message

Logging” or “Don’t Show” Message Logging. If set to Show Message Logging, the
Channel value table will be shortened by four rows, making room for a control at the
bottom of the Control tab that can be used to type messages and send them to the log
file.

 The Control Tab configuration is available only for MICAS-X for Windows and is
not supported in MICAS-X-RT.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 45

7.4.6 Sequences

 The Sequences Module allows the operator to define any number of Sequences
which can automate much of the MICAS-X functionality. Multiple Sequences can run
simultaneously. Sequences can use any of the MICAS-X commands listed in Appendix B,
can reference any MICAS-X Channel as an input or condition channel, and can act on any
MICAS-X Controller channel. Sequences can include branching (conditionals), looping,
and timing. Note that sequence timing has sub-second resolution, but is intended for
non-time-critical functions that typically operate on the time scale of seconds.
Programmatic actions that require more precise timing should be implemented in
MICAS-X in a custom-programmed Instrument module. As of version 1.5 of MICAS-X,
Sequences can be paused, unpaused, and can be started at an arbitrary step. (Note that
for the Start Sequence command, the step is specified by number. Specifying the step by
its label is not currently supported.) Note that when a Sequence is paused, any Wait
that may have been in process is considered finished when the Sequence is Unpaused.
E.g. if a Sequence has a long wait that you wish to abort and have the Sequence
continue without waiting the full time, you can Pause and then immediately Unpause
the Sequence.

 As of version 2.1.4 of MICAS-X, Sequences also include Scripts (see Section

7.4.8.) Scripts are a more powerful way of writing Sequences, but cannot be created
with the Sequence Editor.

 The Sequence Module is built into MICAS-X and is always present, and can be
used with or without the Sequences Driver or the Sequences Display. The Sequences
Driver is an optional MICAS-X Driver that provides additional functionality for
Sequences, as described in the Drivers section of this document. The Sequences Display
provides a display tab that allows the operator to see all the sequences, review what
each step of each sequence does, start and stop sequences, and view the current step of
any sequence that is running.

 The Sequences editor allows the operator to define the sequences available in
MICAS-X. In the “Sequences” list in the upper left, click on a sequence you wish to edit
to highlight it. To add a new sequence, click “Insert.” Once a new sequence has been
added, make sure it his highlighted, then the Sequence Name and other parameters can
be edited. (Note that you cannot directly edit the Sequence Name in the Sequences list
box.) To delete a sequence, click “Delete.”

In the “Steps” list near the top center, insert and delete steps in a manner similar

to how Sequences are inserted and deleted. To edit the sequence name, type in the
desired name in the “Sequence Name” box. “Off Label” allows you to define the text
that is visible on the sequence switch when it is in the off position. If left blank, the

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 46

sequence name is used. “On Label” is used in a similar manner for the text on the switch
when in the on position. Two switches below these buttons allow the user to include an
Exit Step and to optionally Log each step of the sequence as it executes. An exit step is a
single sequence instruction that is executed automatically whenever a Sequence stops.
This step will execute regardless of why the Sequence is stopped – e.g. regardless of
whether it ran its course and stopped normally, or the user clicked the Sequence button
to stop it, another command stopped the Sequence, or the program stopped completely.
If more than one command must be executed when a Sequences stops, it is possible to
define another Sequence with all of those commands, and use the “Start Sequence”
command as the Exit Step to call the other Sequence.

Once a Sequence is highlighted in the Sequences list box, you can program each
step of the sequence. Give a step a label by typing in the appropriate “Label” box. Labels
are semi-optional, but it is good practice to give each step of each sequence a unique
label. Labels server two purposes. They provide documentation to help understand
what the sequence step is intended to do, and they provide a target for the Goto
Sequence Command.

Next to the Label, select one of the available commands to execute by clicking

the white “Command” box, or by cycling using the arrows to the left of the box.
“Condition” defines what condition is applied to define a sequence step. A Condition of
“True” (the default value) means that a step will always be executed when the Sequence
comes to it. A condition of “False” is a way to disable a step without removing it, as it
means that the step will never be executed. Other conditions compare the value of the
Condition Channel to the Threshold to determine if the step will be executed. For
example, the “>” Condition means that a step will only be executed if the value of the
Condition Channel (at the time that the step is executed) is greater than the Threshold.
Note that three special conditions are included that deal specifically with the value

“NaN”, or Not-a-Number. Refer to section 7.4.8 for more information on these
conditions.

 “Target” defines what the step will act on. The contents of the Target drop-down

menu change depending on the Command selected. For example, if the Goto Command
is selected, the Target drop-down list will contain all the Labels in the current Sequence.
If the Set Command is selected (to Set a Controller Channel to a new value), the Target
list will contain all the available Controller Channels. The “Value” parameter specifies
the value that is used by the Command if the step is executed. The Target and Value
parameters are greyed out for Commands that do not require a Target or Value.

At the bottom of the window, “Minimum Sequence Time” allows you to select

the time in milliseconds that the program must wait between each step in a sequence.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 47

The recommended time is 10 ms. Making it smaller can lead to more accurate sequence
timing, but can potentially impact the overall performance of the program.

“Startup Sequence” and “Shutdown Sequence” options allow you to select

sequences which automatically run each time MICAS-X launches and finishes,
respectively. If you want more than one sequence to run at start-up or shutdown, one
can create a new Sequence with a list of “Start Sequence” Commands, then call this new
Sequence as the Startup or Shutdown Sequence.

 Sequences can be exported and imported to .seq files for archiving, duplicating,
or sharing. The Export button will write the currently selected sequence to a .seq file
named by the operator. The Import button will read a .seq file and incorporate the new
sequence before the currently selected sequence. To import a sequence at the end of
the list of existing sequences, use the Insert button to add a new, blank sequence at the
end of the list, then import the desired sequence while the new sequence is selected.
Finally, delete the unwanted blank sequence.

 The “Include Time?” parameter is used only for the Sequences Driver. It is
ignored by the Sequencer module itself and by the Sequences Display. If this is set to
True, the Sequences Driver channels are prepended with a timestamp channel so that
the exact time that those channels were recorded is noted in the data file.

 When the mouse is inside one of the Command selectors, help information for
using that command will appear where the Notes normally are. Move the mouse over
the Sequences or Steps lists to make the Notes reappear.

 Additional information on Sequences and how to use them successfully in

MICAS-X can be found in Section 9.6.4Appendix C: User Dialogs and

Notifications. Information on how Sequence Sets can be defined and used can be

found in Section 7.4.7.

 The Sequences module works in both MICAS-X for Windows and MICAS-X-RT.

7.4.7 Sequence Sets

 Sequence Sets allow Sequences to be grouped into logical sets for clarity and for
increased control of the Sequences. The set “All” contains all defined Sequences and
always exists. It should not be explicitly defined, since it is included automatically as a
Sequence Set when the program is run. Use the Sequence Sets Configuration screen to
define additional Sets. In this configuration window, name any Sequence Sets in the Sets
list. Use the Delete and Insert buttons to its right to remove or add Sets from this list.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 48

 When one of the Sets in the list is highlighted, you can edit that Set. The
Sequence Set Name can be edited in the control to the upper right. The Sequences that
are members of that Set can be edited in the array to the right. Use the Delete and
Insert buttons to remove and add Sequences to the selected Set. Note that all the
Sequences you wish to add to a Set must have been defined in the Sequences Editor
before using the Sequence Sets Editor. Also note that any Sequence can be included in as
many Sets as desired.

 Once Sequences have been assigned to Sets, one can select which Set to view in
the Sequences Display and the XRT Sequences Display. By filtering which Sequences are
displayed in this way, configurations with many Sequences defined can more easily be
understood. The “Initial Set to Display” parameter in the Sequence Sets configuration
editor determines which set is displayed when the program starts. The “Instructions”
parameter allows one to include run-time instructions for the operator regarding
Sequences. If this parameter is not blank, the text here will appear on the Sequences
Display when the program is run.

 In addition to selecting which Sequences to view, the Sequence Sets can be used
with the Command StopSeqSet. This allows a single Command to stop a number of
Sequences.

7.4.8 Scripts

 Scripts were introduced in MICAS-X 2.1.4. Scripts are a more powerful type of
Sequence. Scripts are stored outside of the MICAS-X configuration file in files with the
.mscr extension, in the Scripts subdirectory of the support folder. The file name is the
name of the Script in MICAS-X. The contents of a script file is simple text, with each line
making up one Script line, as per the format described below. When a Script file is
loaded into MICAS-X at run time, it is converted to a Sequence. The name of the
Sequence is the Script name (e.g. the script file name), and each line of the Sequence is
a Sequence Command “Script” with the string argument being the line from the script
file. Once a Script has been loaded into MICAS-X, it is treated the same way as all other
Sequences. It can be stopped, started, and paused with the same Commands. It can be
displayed in the Sequence Display. Script files are usually created by custom tools in
MICAS-X written for specific applications or customers. However, it is possible to create a
Script file in a text editor, if care is taken to comply strictly with the syntax.

 Use the Scripts Editor window to tell MICAS-X which Scripts are to be included in
the current configuration file. Although simple Scripts can be written by hand in the
Scripts Editor, Scripts are usually created through custom Utilities.

 The Scripts list box on the right side of the editor show the Scripts that have been
loaded into the current configuration file. Use the red “Delete” buttons to its right to
remove a Script from the list. Click on a Script in the list to highlight it. When a Script is

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 49

highlighted, the contents of the Script file is displayed in the Script text box on the right.
If this text is changed or edited while it is displayed, the changes are automatically saved
to the selected Script file.

 The Available Scripts list displays those Scripts present in the Script directory of
the MICAS-X Support directory, but which have not yet been added to the list of Scripts
included. Double click on a Script in this list to add it to the current MICAS-X
configuration. To create a new Script, enter a name in the Script Name box, then press
the New Script button. An empty file with the name and the .mscr extension will be
created in the Scripts directory, and the Script will be added to the Scripts list. At this
point, you can write the script manually if you wish, by typing in the Script box. The
Commands, Channels, Triggers, and Drivers lists below the text box are intended to help
with the writing of Scripts, since you can copy and paste these names into a Script as
needed. Note that all these names are case sensitive.

 The general syntax of a Script line is:

[label]command:string:expression;string:expression;string:expression{expression=expres
sion}'comment

 Label: The “label”, inside the square brackets, is optional. It acts as the step label,
just as for a Sequence, and can be referenced by the Goto Command.

 Command: The “command” is the Command to be executed. It must be spelled

exactly, but is case insensitive. Refer to Section 14 for a list of Commands.

 Parameters: The format of the parameters depends on the Command being
used. The supported combinations of parameters are:

string

value

string:value

string:string

 The string parameters can be a Channel name, a Controller Channel name, a
Sequence name, a Trigger name, a Driver name, or a Sequence or Script Label. Any value
can be a constant, a Channel name, or an Expression. (See the discussion of Expressions
in the section below about Conditions.)

 Multiple groups of parameters can be included, separated by semi-colons. When
multiple sets of parameters are used, each set is sent with the same Command that the
Script line specifies. These multiple instances of the same Command are sent in the
order in which they appear in the Script line.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 50

 Condition: The text inside the curly brackets is an optional Condition. It consists
of two expressions separated by a conditional symbol. Each equation can be a constant,
a Channel name, or an expression made up of constants, Channels, and functions. The
syntax used by expressions is the same as that supported by the Equations Driver, and is

documented in Section 17.

 The conditional symbols supported are:

False the command is never executed

True the command is always executed

< executed when the first expression is less than the second expression

<= executed when the first expression is less than or equal to the second
expression

= executed when the first expression is equal to the second expression

<> executed when the first expression is not equal to the second expression

>= executed when the first expression is greater than or equal to the second
expression

< executed when the first expression is greater than the second expression

=NaN executed when the first expression is equal to Not a Number

<>NaN executed when the first expression is not equal to Not a Number

<>NaN,0 executed when the first expression is equal to Not a Number

 Comment: A comment starts with an apostrophe, and is optional. It is ignored by
MICAS-X and is only used to provide clarity to anyone reviewing the Script. If a comment
is on a line by itself, it is ignored and no line is included in the Sequence that is created
from the Script when it is loaded into MICAS-X.

 Below are some example Script lines:

[set valve1]Set:valve1:0{temp>25|’close valve0 if the temperature is greater than 25

 This Script line has the label [set valve1], and a comment that describes what it is
doing. The Set Command will only be executed at runtime if the Channel “temp” has a
value greater than 25 when the Script line is run.

Set:valve1:1;valve2:1;valve3:0

 This Script line sets three valve Channels, each to the value 0.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 51

‘The lines below are the emergency shutdown procedure.

 The Script line above is a comment only and is ignored when the Script is loaded
into MICAS-X.

[add offset]Add:output1:5 + channel3

 The Script line above adds the value of the Channel “channel3” and the constant
5 to the Channel “output1”. Note that the Add Command has arguments of a Channel
and a Value. When used in a standard Sequence, the second parameter can only be a
constant. When used in a Script, the second parameter can be an expression, including
other Channel values.

7.4.9 Triggers

 The “Triggers” Module allows you to define Triggers and Alarms which will be
used in MICAS-X. The Triggers Module is always part of MICAS-X, and can be used with
or without the “Triggers” Driver. The Triggers Driver adds additional functionality to the
Triggers and is described in the Drivers section of this document.

 A Trigger is a set of parameters that define a Command that will be executed
whenever a Condition is met. MICAS-X continuously scans the defined Trigger
Conditions and executes a Trigger whenever the Condition occurs. Alarms are a special
type of Trigger that provide additional feedback to the operator. If any Alarms are
defined, an Alarm indicator appears in the upper right corner of MICAS-X. The Alarm
indicator is green (OK), yellow (Warning), or red (Alarm) depending on the highest state
of all defined Alarms.

 The “Triggers” list displays the defined triggers. Click on a trigger and highlight it
to edit it. Insert a trigger using “Insert,” and delete one by pressing “Delete.”

 Once a Trigger is highlighted, the various parameters for it can be edited. The
“Trigger Name” allows you to change the name that describes the highlighted trigger by
writing in the desired name in the box. The “Log” switch will allow you to choose
whether or not the Trigger actions are logged when they occur. The “Alarm/Trigger”
switch allows you to determine if the highlighted item will be a Trigger or an Alarm. “Min
Time” specifies the minimum time in seconds that the trigger condition must be met
before the trigger is set to true. Set this to 0 to make the trigger go off immediately upon
recognizing a Condition. Setting higher can prevent noise from causing a trigger. If the
Trigger Condition becomes True but the Min Time has not been met, the Trigger is set to
the Warning condition. If the Condition remains True long enough for the Min Time to

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 52

be met, the Trigger will go into the True or Alarm state. If the Condition becomes false
before the Min Time is met, the Trigger state will revert back to false or OK.

 The “Condition Channel” box allows you to choose, from a drop-down menu,
which channel is checked for the condition to determine the Trigger state. “Condition”
determines which condition will cause the trigger to change. “Threshold” allows you to
specify the value that the channel will be compared to, using the condition, to
determine if the Trigger occurs. The “Hysteresis” parameter applies hysteresis to the
trigger condition, to avoid noisy data from causing the trigger to oscillate.

Note that if condition = is used, a positive, non-zero Hysteresis creates an “In-
Range” condition. E.g. for a Threshold of 10, a condition of =, and a Hysteresis of 2, any
values between 8 and 12 will yield a true result. Similarly, for a < > (not equals)
condition, non-zero Hysteresis creates an “Out of Range” condition. For both of these
cases, the limits are inclusive of the values of the Threshold, plus or minus the
Hysteresis.

 Three conditions are included to deal with the value “NaN”, or Not-a-Number.
NaN is used in MICAS-X to indicate missing data. For example, all Driver input channels
are set to NaN when the program starts, and only have valid data after the first
acquisition loop. Using normal conditions with NaN can yield surprising results. For
instance, a value of NaN with the conditions > 0 or < 0 both give a result of False. If a
condition must be sure to test for NaN correctly, use one of these conditions: =NaN,
<>NaN (not equal to Nan), or <>NaN,0 (not equal to NaN and not equal to 0). The last
condition is especially useful for MICAS-X channels that are used as Booleans. Booleans
are typically encoded in MICAS-X as 0 for False, and 1 for True, though any non-zero
value is also interpreted as True. The last of the NaN conditions, by checking for both
<>0 and <>NaN, ensures that only a truly non-zero value is interpreted as a True value,
and avoid interpreting a start-up value of NaN as True.

 The Include Acknowledge Dialog parameter, if set True (On), will cause a dialog
box to pop up whenever the Trigger/Alarm becomes True or Alarm. The dialog will
remain until the operator closes it. Similar functionality can be created with the Alert
command, but use of this option allows a different command other than Alert to be
acted on while still presenting a dialog.

 The Start Disabled? parameter determines whether or not the Trigger/Alarm
starts normally, e.g. enabled (Start Disabled? = False), or if it is Disabled (Start Disabled?
= True) when the program starts. Triggers can be enabled and disabled while the
program is running using the DisableTrigger and EnableTrigger Commands.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 53

 The State of a Trigger can have one of five values. (By including the Trigger Driver
in the configuration, additional channels are created which hold the State and Theshold
values for each Trigger.) The five possible values are -1: Disabled, 0: False, 1: Warning, 2:
True, 3: Alarm. Note that Disabled is a type of “False” case. E.g. if a Trigger goes from
True or Alarm to Disabled, the True-to-False action is executed. Warning means that the
Condition for the Trigger has been met, but that there is a Minimum Time set which has
not yet expired. Alarm is a type of “True” case, but is used when a Trigger has been
specified as being an Alarm. All Alarms are evaluated together to determine the state of
the Alarm indicator at the upper right of the MICAS-X screen.

 When the mouse is inside one of the Command selectors, help information for
using that command will appear where the Notes normally are. Move the mouse over
the Triggers list to make the Notes reappear.

 Example: Handling the CRC Error

 For versions 1.5.0 and later of MICAS-X, the Configuration Editor places a CRC
value in each configuration file. If MICAS-X is run and finds that the CRC value is not
valid, indicating that the configuration file is corrupt, missing, or has been edited by
hand, it is possible to use Triggers or Alarms to automatically handle this situation. In
the first example here, an Alarm is configured which stops MICAS-X when the CRC is not
valid. The second example causes an Alert to be shown, so that the operator is
definitively notified of the issue. (Note that the CRC error will always be logged in the
log file, but the use of the alert in the second example ensures that the operator does
not overlook that subtler notification.)

 For both examples, a Global must be used to latch the specific error. See section

7.4.11 for an explanation of why monitoring the Error channel directly is unreliable.
The figure below shows the configuration for setting up Global 0 with the name “CRC
Error” and the Latch Error value of 7033, which is the error code for when the CRC of the
configuration file is invalid.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 54

 The second step is to create a Trigger that watches the Global and exits MICAS-X
if the error is detected. The configuration for this is shown in the Figure below.

 The combination of these to configuration steps will result in MICAS-X stopping
automatically if the CRC error is present.

 For the second example, the Global is configured the same as above, but the
Trigger is configured as shown below. Note that the Trigger/Alarm parameter has been
set to Alarm, to give make the alarm condition more visible in MICAS-X. Also note that
the FT Target string is not completely visible in the screenshot below, but is shown in full
in the following figure where it appears in the Alert. The FT Value of 0 tells MICAS-X to

create the default Alert dialog box. See section 14 for other options of the Alert
Command.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 55

 As a result of this configuration, when the CRC is detected as invalid, the user is
presented with the following dialog box, which will not disappear until the user clicks on
“OK”. The MICAS-X program will continue even while the dialog is open, however.

 The Triggers module works in both MICAS-X for Windows and MICAS-X-RT.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 56

7.4.10 Constants

 The final entry in the Modules list in the Configuration Editor is “Constant”. This
configuration screen allows you to define any number of constants to use in the MICAS-X
system. Constants are similar to channels. They can be used in equations, calculations,
sequences, triggers, and commands. Unlike channels, however, they are not written to
data files, do not show up in the lists of channels that can be shown on graphs, and
cannot change value while the program is running. The value of each constant is
determined in the configuration file, and the archive of the configuration file serves as
the record of the constant values.

 In the Constants configuration screen, enter names for constants in the
“Constants” list, and enter the values of those constants in the Values list. The Delete
and Insert buttons can be used to remove or add more constants to the list.

 The Constants module works in both MICAS-X for Windows and MICAS-X-RT.

7.4.11 Globals

 “Globals” are optional channels that can be accessed by any part of the program,
e.g. they have global scope throughout the program. If you do not assign a name to a
global variable, it will not be used within MICAS-X. Globals can be used as program
variables, memory for user-entered information, or inputs to Calculations or Equations,
among other things. There are a special set of commands that allow Globals to be
referenced by index number, which adds additional functionality to the Commands.
Finally, the Globals can be used directly in Calculations or custom Displays or
Instruments just as a normal LabVIEW global variable. This allows Calculations, for
example, to have configurable parameters by using the Globals configuration page.
 The “Initial Values” list allows you to select the initial value of the Global when
MICAS-X starts. The Latch Error list enables a special function of Globals. The Error
Program State Variable automatically contains the error code number of the most recent
error to occur. However, more than one error can happen during a data acquisition
cycle, so the Error channel serves only as a snapshot to see if any error has happened. If
you need logic that can identify a specific error without risk of missing it, use a Global
with the Latch Error function. Set the Latch Error value to the numeric error code you
wish to monitor, and assign a meaningful name to that Global. If that error ever
happens, the associated Global will be set to that error code value and will not return to
zero until it is explicitly set. Thus the Latch Error function can be used to enable Triggers
or Sequences or other mechanisms to catch any particular error, even if many errors are
rapidly occurring.

 The Globals module works in both MICAS-X for Windows and MICAS-X-RT.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 57

7.4.12 Enumerated Lists (Enum Lists)

 An Enumerated List is a list of numeric values, each of which is associated with a
text string. These can be useful for display Mode or Status channels. For example, a
Channel might take on the values 0, 1, or 2, depending if the system being controlled is
in Off, Standby, or Run mode. The enumerated list 0=Off, 1=Standby, 2=Run could then
be used to display that Channel in a way that is much more intuitive for the operator
than if the numbers 0, 1, or 2 is displayed. Note that Enumerated Lists in MICAS-X are a
user-interface feature. The data for all Channels is stored inside MICAS-X and in all data
files as numeric data, not as the text equivalents.
 Prior to version 3.2, MICAS-X had enumerated lists available for the Options that
appear above the main MICAS-X tabs, and within the Multi Display. In previous versions,
the Enum Lists were defined in the MICAS-X Editor and the Multi Display Editor. As of
version 3.2, the Enum Lists are defined in the Enum List Editor. The MICAS-X Options and
the Multi-Display then can select an existing Enum List this single set of configured Enum
Lists. In this way, the same Enum List can be used in multiple parts of MICAS-X without
having to be defined separately in each location.
 To define an Enum List in the Enum List Editor, use the Insert buttons to the right
of the Enum Lists array to add a new Enum List. (The Delete buttons can be used to
remove Enum Lists when needed.) When the new list is highlighted, edit its Name in the
Name field to the right. Then, with it still highlighted, use the Enumerated List array to
define pairs of numeric values and text values. The Delete and Insert buttons to the right
can be used to remove and add pairs.
 In many software systems, enum lists are limited to integer values. MICAS-X
allows non-integer values in the numeric/text pair, but it is recommended that integer
values normally be used.
 Enumerated Lists can be used as Channel Indicators or as Channel Controls in
MICAS-X. The value “[other]” is automatically added to the list of possible text values. If
the Channel ever has a value that is not included in the defined Enum List, then the text
“[other]” is displayed.

7.4.13 Commands Menu

As of version 3.3.7 of MICAS-X, the user can configure an additional menu item
to appear at the top of the MICAS-X window. This menu will have the name
“Commands”, and can contain any number of entries. The entries are descriptive names
given to commonly-used Commands that the user wants easy access to. Use the
Commands Menu Editor in the Modules section to configure these Commands.

The Command Names box to the left is a list of all the Commands that have been
configured. Use the Delete and Insert buttons to remove or add Commands from this
list. This list will show the descriptive Command Name, as it will appear in the menu, not
the Command itself. For example, one might have the Command Names “Set Tank Temp
to 45” and “Set Pressure to 120” for two different entries. Each entry would use the

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 58

same Command (e.g. “Set”), but the descriptive names allow them to be easily
differentiated.

Once a Command Name is highlighted in the Command Names list, the
parameters defining that Command are shown to the right. Use these parameters to
specify the Command Name, the Command, the Channel, Sequence, Trigger, Driver, or
other string used by the Command, any Value used by the Command, and the Source
Channel, if applicable.

Make sure the “Command Menu Visible” box is checked if you wish the
Command Menu to appear in MICAS-X. Unchecking this box ensures that no Command
Menu is present, typically for the case when no Commands have been defined.

7.4.14 Security

 This configuration panel allows you to define a backup configuration file and to

set a password for MICAS-X. See section 7.3 for more information on the Backup
Configuration file.

 The password feature of MICAS-X provides a mechanism for preventing
unauthorized operation of selected features of MICAS-X by untrained individuals. It is
not intended to provide security against malicious attack.

 The password used for MICAS-X is encrypted before it is stored. The current
password is never displayed. If the configuration file itself is not password protected (as
determined by the “Secure Config File” parameter), a new password can be assigned at
any time. If the configuration file is secured, the password must be entered before the
configuration file can be accessed, after which a new password can be supplied if
desired.

 To enter a new password, type the new password into the “Password” and “Re-
enter Password” parameters. If the two entries match, the “Save Password” button will
become available. Press that button to save the new password. Press the Clear
Password button to remove a password that has previously been assigned.

 When a password is enforced, there will be a lock icon in the upper right of the
MICAS-X window, and the Program menu will have a Password entry that is checked.
Clicking on the lock or selecting the Password menu item will cause a password dialog to
appear. If the proper password is supplied, the lock icon will become unlocked, and the
Password menu item will become unchecked.

 If the Time to Re-Secure parameter is non-zero, the password will be
automatically put back in force after the designated number of seconds have expired.
While this timer is counting down, the time remaining can be seen on the MICAS tab of
the program in the Lock Time indicator.

 The Secure Options check boxes allow one to select any or all of the eight
possible options along the top of the MICAS-X window for protection by the password.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 59

If an option is selected, it will be greyed-out and impossible to change until the
password is entered. (This applies to options which control channels or commands only.
Options which only indicate a channel value are not affected.)

 The Secure Exit checkbox determines whether or not MICAS-X can be stopped
without entering the password. Note that this parameter only prevents the use of the
Exit menu item and the “x” in the upper right corner of the MICAS-X window which
stops the program. Even when this option is selected, it is still possible for MICAS-X to
be stopped via a command, if the commands are accessible to the operator.

 The Tabs list allows each tab of the MICAS-X display to be secured. When a tab is
selected, all controls and indicators on the tab are greyed out and cannot be changed
until a password is entered. Note that Displays and Instruments that are configured to
be Outside of MICAS-X cannot be secured using this mechanism. Also note that all
Displays and Instruments should be configured into MICAS-X before selecting which tabs
are secured, since the tabs are referenced by number, not name, and adding or
removing Displays or Instruments could result in the wrong tabs being secured.

The Security module works only in MICAS-X for Windows and is not supported in
MICAS-X-RT.

7.4.15 Advanced

This configuration window contains parameters the are less often edited.
Previously to version 3.3.5, some of these parameters were in the MICAS configuration.

The Log Wait Time-Outs parameter determines whether certain time-out
conditions internal to MICAS-X are logged as errors or not. Within parts of the UI of
MICAS-X and within the Sequencer, when a channel is being set to a value, MICAS-X will
often call a Wait For New Value or Wait For Different Value function. This is intended to
help ensure that the channel is set to the desired value before the next Sequence Step
or next action within the program takes place. However, these functions have a time-
out, which allows the program to continue functioning even if the new value does not
get set within the specified limit. This parameter determines whether or not such time-
outs are logged as errors 7078 and 7079.

 The “Delay on Startup” option is used to allow the program to initialize properly
when it starts. If it is true, and the “Delay (sec)” parameter is non-zero, a modal dialog
box will inform the user to wait while the program initializes, for the number of seconds
specified by the “Delay (sec)” parameter. During this time, the operator will not be able
to click on the MICAS-X window to affect any actions.

 The Update Time is specified in milliseconds. The default value of this parameter
is 500ms, or ½ second. This parameter determines the rate at which the Control tab is

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 60

updated with new data values. The proper value for this parameter depends on the rate
at which Driver data is acquired.

7.5 Drivers

 To add Drivers to a MICAS-X configuration, see the Acquisition section (8.1). See
that section also for information about using Prefixes with Drivers. Note that any time a
single Driver is used more than once in a MICAS-X configuration, Prefixes are necessary
to keep track of the instances of the Driver. Below are instructions on how to configure
the drivers that come included with the purchase of every copy of MICAS-X software
(e.g. drivers included with the base package).

7.5.1 Common Driver Parameters

 There are several parameters that are found in all Drivers, and some that are
common to a large subset of Drivers. For brevity, those parameters are described here.

 Disabled on Startup? Is False by default. If it is True, the associated Driver will be
disabled when MICAS-X first starts. Disabled Drivers to not attempt to communicate
with their hardware and hence will not throw errors if the hardware is not functioning
correctly. They return “NaN” values for their channels while disabled.

 Include Time? Is set to True if you want the Driver to create a Time Stamp
channel specifically for its own data. This can be useful when more than one acquisition
loop is being used, especially if the loops have different acquisition rates. By making this
parameter True for at least one Driver in each loop, you can later determine exactly
when each data value was acquired and how the values from different Drivers relate to
each other in time.

 Include State? Is set to True if one wishes to create a Driver Channel that
indicates the State of that Driver. Currently, the only State information that is returned is
a 1 if the Driver is enabled, or a 0 if it is disabled. Further state information may be
included in the future, encoded bit-wise in this channel.

 Record Data Stream? Is a parameter which available in those Drivers which
support recording their raw data stream to an ICM file. (Drivers that support ICM file
writing are usually for instruments which send all the data for all of their channels in one
packet, often without any querying necessary.) This raw data file can be useful in
debugging the MICAS-X Driver for the device, or in helping configure the device properly.
The ICM file recording can also be turned on and off while MICAS-X is running through
the DriverFileOff and DriverFileON Commands.

 Initial Mode is a parameter which is available in a subset of Drivers. This subset
includes most of the Driver which have controller, or output Channels. This parameter

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 61

selects how the output Channels will be set when MICAS-X starts. If set to True, “Use
Configuration Initial Value”, then when MICAS-X starts running, each output Channel will
be set to a value that is specified in the configuration file. The False option may be
labeled “Use Current SetPoint Value”, or “Use Previous SetPoint Value”, depending on
how the device works. For devices which have the ability to read the current value of
their output Channels, the “Use Current SetPoint Value” will cause the Driver to
synchronize the MICAS-X Channel to the actual value that the hardware is using when
MICAS-X starts running. For devices which cannot read back in their current output
Channel values, the “Use Previous SetPoint Value” option reads a special configuration
file that MICAS-X uses to store Driver output Channel values. These two mechanisms are
used to allow MICAS-X to be stopped and restarted without interrupting the values that
output Channels are set to.

 Check for Serial Port is not a parameter, but is a feature found on many MICAS-X
configuration editors for modules that use serial ports. Pressing this button allows one
to determine which serial ports are currently configured on the computer that is running
the MICAS-X configuration program, which can assist in configuring instruments and
assigning them to the correct serial port.

7.5.2 Array.vit

 The Array driver allows one to implement a one dimensional array of data that
can be used programmatically throughout the MICAS-X program. Multiple arrays can be
created by using this driver repeatedly. This type of array can be used, for example, in
sequences, to step through a set of process variable values which cannot be easily
specified by an equation. For example, a voltage could be stepped through a
1,2,5,10,20,50,100 sequence by creating a seven element array of those values and
incrementing the array index in the sequence, then reading the array values.

 Enter a name for the array in the “Array Name” parameter. This name will be
used to read and write the array values. In addition, it will be used as the basis for
several other channels that the driver creates. For an array with the name “ArrayName”,
there will also be a channel called “ArrayName Index”, which will be used to specify the
location within the array to read or write data. The Channel “Array Name Time” is
similar to the Time channel every driver has, and records the time when the Array values
were recorded, if the “Include Time” parameter is True. If the “Include Size” parameter
is True, then another channel named “ArrayName Size” will be created that is a read-
only channel and which returns the number of elements in the Array. (Note that the
ArrayName Index channel can have values from 0 to ArrayName Size – 1.)

 If “Allow Array to Grow” is not checked, the array size will be fixed by the number
of entries in the Values list in the configuration. Trying to set the ArrayName Index

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 62

channel past the ArrayName Size – 1 will result in an error. If this parameter is checked,
then setting the ArrayName Index to a value greater than ArrayName Size and then
writing a value to the Array channel will cause the Array to be extended as needed, with
zeros placed in any new elements between the end of the old array and the new value.

 Use the Delete and Insert buttons to remove and add values in the array list. The
Import from File button can be used to read an array of data from a file. This file must
be either a single column of numbers separated by returns, or a single row of numbers
separated by commas.

 The Array Driver supports two Commands. ClearArray sets all the array elements
to the value 0. It does not change the number of elements in the Array. ShowArray
causes a window to be displayed which summarizes the current state of the Array. It
shows the values in the Array, the Array Index, the Array Size, and several configuration
parameters which affect how the Array works. Note that if the state or contents of the
Array change, this display does not update to reflect those changes. It only contains a
snapshot of the Array state when the display was opened.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1.

 The Array Driver works in both MICAS-X for Windows and MICAS-X-RT.

7.5.3 Averager.vit

 This Driver allows one to average the value of existing Channels over a user-
defined number of acquisition cycles. The Channels to Average array defines the
existing Channels that will be averaged. Use the Insert and Delete buttons to the right of
the array to add and remove Channels from this list. The # of Pts to Average parameter
defines how many acquisition cycles will be averaged for each Channel.

 The averages calculated by this Driver ignore any instances of “NaN” that may be
in the data stream for any Channels. E.g. If # of Pts to Average is set to 5, and a
channel’s values for the last 5 acquisition cycles are 3,3,NaN,4,4, then the average
calculated for that Channel will be 3.5, with the NaN value being ignored. Similarly,
when this Driver starts, all the Channels to be averaged will be initialized with a buffer
of n NaN’s, where n = # of Pts to Average. In this way, as the Channels’ data first
becomes available, the average is calculated over the initial points, not over a full set of
n points. E.g. after three acquisition loops, the buffer for a Channel (with n = 5) may
look like 3,3,4,NaN,NaN, since only the first three elements of the buffer have been
populated. In this case, the calculated average for that channel will be 3.333, with the
NaN’s being ignored.

 This Driver should be used with care, since it can have several unintended side
effects if it is not configured correctly. If too many channels are added to the list of
channels to average, and/or the Number of Points to Average is too high, performance

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 63

of the entire MICAS-X system could be impacted. Note that every channel being
averaged will have an internal buffer of size equal to # of Pts to Average, which will be
used to hold the channel history for calculating the average.

If Overwrite? is False: Create New Channels, then this Driver will create a new channel
for each of the Channels to Average, with the text " (avg)" appended to each of the
original channel name. The averaged values will be written to these new channels. The
original Channels will be unchanged.

If Overwrite? is True: Overwrite Original Channels, then this Driver will place the
Channel's averaged values in the original Channels' location in the main program’s
Channel Values buffer. In this case, the source Channel’s Driver itself will still have the
original, unaveraged values in memory, but that unaveraged value will not be accessible
to any other part of MICAS-X. The Channel's averaged value will be the value that is
distributed to the rest of the MICAS-X system. In order to successfully use this option, it
is important to ensure that this Driver is added to the Acquistion list of Drivers
immediately after the Driver(s) that contain the Channels to be averaged, and that this
Averager Driver must be in the same Acquisition Loop as the Driver(s) whose Channels
are being averaged.

Note that if one needs to average channels from drivers that are in different Acquisition
Loops, it is possible to instantiate more than one instance of this Driver and assign one
instance to each of the Acquisition Loops that need averaging.This Driver supports the
Disabled on Startup?, Include Time?, and Include State? Parameters, which are

discussed in section 7.5.1.

7.5.4 Calculations.vit

 The Calculations Driver allows the user to calculate outputs based on one or
more channels’ values. To configure a calculation, begin by double-clicking on an option
in the “Available Calculations” box in the upper-left-hand part of the window. This list
contains all the Calculations installed on your system. Any calculation labeled “.vit” can
be used more than once. The selected Available Calculation will be moved to the box
directly below, labeled “Calculations”. Click on the Calculation in the “Calculations” box
to highlight it and edit its parameters. When a Calculation is highlighted, a Description
will appear on the box to the right. This information will tell how many input and output
channels the Calculation must have in order to work correctly, and what their order must
be.

 The “Channel Averager” calculation takes a single input and averages it over N
samples to create a single output channel (where N is acquired from Global 0, or first
global variable found under Modules/Globals). Select the desired Input Channel from
the drop-down list labeled “Input Chanel” below the description of the Averager. Name
the Output Channels by typing the desired names in the Output Channels list. Make sure

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 64

to set Global 0 to a valid initial value in the Modules\Globals editor for this Calculation to
work properly.

 The “Previous Value” calculation provides a way to create memory of a channel’s
previous value. This calculation takes one channel as input and creates one Output
Channel. The Output Channel will contain the value of the Input Channel on the
previous iteration. This calculation can be used to create logic that looks for changes in a
Channel’s value, or which measures the rate of change of a Channel’s value. This
calculation is a .vit, so it can be instantiated any number of times.

 The “Demo Calculation” calculation is a simple demonstration calculation that
can be copied to create more complex calculations for use in various systems. To
configure it select two Input Channels from the drop-down list. This calculation will sum
the two channels to arrive at a single Output Channel. Name the Output Channel it
creates by typing a new channel name in the first line of the Output Channels list.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Which are discussed in section 7.5.1.

 The Calculations Driver works in both MICAS-X for Windows and MICAS-X-RT.

7.5.5 Document

 The Document driver supplies additional functionality to the Document Display.
By including the Document Driver, the Document Number and Section Number channels
are created, which allow programmatic control of the document being displayed in the

Document Display. See section 7.8.2 for information on the Document Display.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1

 The Document Driver is supported only for MICAS-X for Windows.

7.5.6 Equations.vit

 The Equations driver allows the user to create new channels based on previously
available channels, or to set existing output (controller) channels to values based on
equations made up of existing channels.

 To insert a new equation, press the Insert button to the right of the “Equations”
section on the left side of the screen. To delete an equation, press the delete button
next to the corresponding equation. To edit an Equation, first highlight it in the
Equations list by clicking on it. The Equation’s parameters will then be shown in the
parameters below the Equations list.

 The value calculated by an Equation can either be used as the value of a new
channel defined by that Equation, or can be sent to an existing output (controller)

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 65

channel. Choose which functionality you wish by setting the Target parameter to False
(New Channel) to create a new channel with the calculated value, or to True (Existing
Channel) to send the calculated value to an existing controller channel.

 When the Target parameter is set to New Channel, the Target Channel parameter
is used to name the new channel. When the Target is set to Existing Channel, the Target
Channel is a drop down list of all the existing controller channels. Make sure that a
controller channel is only targeted by one Equation. E.g. the value of the Target Channel
will be indeterminate if more than one location in MICAS-S is attempting to set its value.

 Equations are made up of Channels, operations, functions, and constants. See

section 17, Appendix D: Syntax for Equations for information on the operations
and functions supported by the equation parser. When writing the equation, select the
entirety of a channel name from the ‘Channels’ list in the center-right portion of the
window, and press CTRL-C to copy this into the clipboard. Paste the name of the selected
channel in the large “Equation” box by clicking inside the Equation box and pressing
CTRL-V. You can use multiple functions and channels to create the desired equation.

 If multiple Channel Lists have been created in the configuration that you are
editing, a specific Channel List can be chosen with the Channel List control so that the
Channels displayed are limited to those in that list. This sorting can make it easier to
find specific channels when a configuration contains many channels.

 To confirm that the syntax of the equation is correct, copy and paste your new
equation into the “Test Equation” box located in the upper-right portion of the window.
Select a channel value (the value selected in the Channel Value control will be the value
for all channels in this equation, as it is only a test to confirm correct syntax). If
functional, a result will appear in the “Result” indicator found to the right of the
“Channel Value” input control.

 If there is an error in your test of the equation, the “Test Equation Error” box in
the lower-right-hand portion of the window will indicate the error status (present or
not), give the error code, and describe the error.

 Note that the LabVIEW functions on which Equations are built do not support the
numbers Inf, -Inf, or NaN. Therefore these numbers should not be used as constants
within the equation text, and if any input channels have these values, the output of the
equation will be set to NaN.

 Example: Using the Equations Driver

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 66

 The Equations Driver can be used for many purposes. One of the simplest
examples would be to create a new channel that displays an existing channel’s data in
new units. For example, the equation:

 (9 * Chamber Temp © / 5) + 32

Could be used to create a new channel named Chamber Temp (F) which converts the
channel Chamber Temp © to degrees Fahrenheit.

 A second, more complex example is from an instrument that measures wind
direction. The direction output was sent out as an angle from 0 to 540 degrees. When a
measured quantity was plotted versus wind direction, some of the data that should have
shown up in the 0 to 180 degree range instead appeared over in the 360 to 540 degree
range. Although the Equations syntax does not support IF/THEN commands, the
following equation was used to resolve the issue:

 Angle -360 * (sign (Angle – 360) + 1) / 2 * abs (sign (Angle – 360))

 The figure below shows how this Equation was configured in MICAS-X, including
the use of the Test Equation to verify that the Angle of 365 was converted to 5.

Figure 5.1 Configuring the Equations Driver to create a new channel that corrects an
angle channel that overflows the 360 degree upper limit.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 67

 Since the “sign” function returns a -1, 0, or 1 depending on the sign of its
argument, the (sign(Angle – 360) + 1) / 2 part of the equation calculates a value of 0,
½, or 1 depending on if the Angle channel has a value below 360, equal to 360, or above
360. The abs (sign (Angle – 360) section of the equation set the ½ value equal to 0 for
the special case in which the Angle = 360.

 An alternate resolution to this issue could have been to write a small Calculation
VI that the Calculations Driver would use. Such a VI would have been trivial to write in
LabVIEW, using a case structure to handle angles below and above 360 degrees.
However, the Equation solution, though a bit convoluted, allows the resolution of the
issue without having to program anything in LabVIEW.

 A third example demonstrates how an Equation can be used to synchronize a
MICAS-X Sequence to the computer clock. In this case, a Sequence needed to start on an
even 5 minute time. E.g. it would be OK to start the Sequence at 1:00:00 or 15:25:00,
but not at 15:26:00 or 15:25:01. The Equation used was

step(floor(Sec Since Midnight/300)*300 - floor(Sec Since Midnight))

This Equation created a new flag channel that has a value of 0 for all computer times
except even 5 minute intervals. The first few steps of the relevant sequence were used
to wait until this flag channel had a value of 1, then to proceed with the main part of the
Sequence.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1.

 The Equation Driver works in both MICAS-X for Windows and MICAS-X-RT.

7.5.7 Manual.vi

 The Manual Driver allows the user to create additional channels that are not
directly associated with any hardware inputs or outputs. The values of these channels
can be set manually by the user as the program runs, to indicate the values of
experimental parameters, or can be used programmatically by Commands, Sequences,
Triggers, or other mechanisms.

 To create a manual channel, click the green “Insert” button. Delete a channel by
pressing the corresponding red “Delete” button.

 Name the channel by entering the desired text in the “Manual Controllers” field.

 Use the “Initial Value” box to the right of the respective manual entry to define
the value that the channel will have when the program first starts running.

 This Driver supports the Initial Mode, Disabled on Startup?, Include Time?, and

Include State? Parameters, which are discussed in section 7.5.1.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 68

 The Manual Driver works in both MICAS-X for Windows and MICAS-X-RT.

7.5.8 MICM.vit

 The MICM Driver is an interface to the ICM (Instrument Communication
Module). ICM is an open source project originally written by OCC and available on
GitHub (https://github.com/NI-ALARM/ICM) It is a successor to OSDS, and allows one to
communicate with a wide variety of instruments by creating a ICM configuration file
rather than writing a new software driver. With ICM, one can read streaming data as
well as query/response data, one can scale data through a variety of mechanisms, and
one can write output data.

 On the MICAS Parameters tab of the MICM Editor, use the ICM Config File control
to specify a new or existing ICM configuration file. It is possible to use an existing ICM
Configuration file that was created with the ICM Configuration Editor outside of MICAS-
X, or create a completely new ICM configuration file.

 Check the “Don’t Use Missing Data” box if you want the MICAS-X MICM Driver to
ignore missing data. This can be useful for instruments that supply streaming data at
irregular intervals. When this box is checked, the MICAS-X MICM Driver can be run in a
“fast” acquisition loop (e.g. a loop faster than data is expected to arrive), and whenever
no data is available, no error will be generated and the previous data will be retained. If
this check box is not checked, any missing data will generate an error and will return
NaN’s for the missing Channels.

 Click on the ICM Parameters tab to access the ICM Configuration Editor, which
will be loaded with the configuration file specified in the ICM Config File control. Refer
to the ICM documentation for information on how to configure an ICM Configuration
file.

 The MICM Driver for MICAS-X is located in the Drivers folder, as are all MICAS-X
Drivers. This MICM Driver calls into the ICM source code, which should be loaded
separately onto the system. The ICM source code is normally loaded into C:\OCC\ICM.
This directory has many sub-directories for the various plug-in modules of ICM, as well
as a Documentation directory. The ICM user manual can be found in that
Documentation directory

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

and Record Data Stream? parameters, which are discussed in section 7.5.1.

7.5.9 MOSDS.vit

 The MOSDS Driver is an interface to the OSDS (OCC Streaming Data System)
toolkit provided by Original Code Consulting. OSDS is a configuration-based system for

mailto:dthomson@originalcode.com
https://github.com/NI-ALARM/ICM

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 69

acquiring data from a wide variety of instruments. Please refer to the previously-issued
OSDS document, called ‘OSDS Description’ for additional information about how to use
OSDS. A copy of this document can be found under MICAS-X/Development
Documentation (for Source Code users) or under OCC/MICAS-X Support/Documentation
(for Executable Version users).

 Note that OSDS Format Files are external to the MICAS-X configuration file. The
Revert and Save buttons above relate only to the MICAS-X configuration file, which
contains the file name of the OSDS format file and the other half dozen parameters on
the left side of the configuration screen. The Revert, Save and Save As buttons on the
right allow you to edit the OSDS Format parameters themselves and save them to an
OSDS Format File.

 To use an OSDS file in the MICAS-X MOSDS driver, click the browse button (a
folder icon) above the box in the upper-left-hand corner of the control labeled “OSDS
Format File”. This box will show the file path of the selected OSDS format file. Below this,
make sure to check or leave blank the OFF/ON box labeled “Don’t Use Missing Data”.
When this option is selected, if the Driver encounters an error and does not get real
data, it will not put NaN’s into the data buffer, but will just leave the previous data in the
buffer as the most recent. This can be useful for situations in which the device sends
data at an unknown or variable rate. By running the Driver in a fast loop, this option will
catch any data available but will not refresh the buffer with NaN’s if no data is available.

 The gray box in the center of the window, labeled “OSDS Format”, will populate
with information from the selected OSDS Format File. Many OSDS Format Files already
exist, though they often need to be edited to work in any given situation. New files can
also be created for talking to many different instruments. By default, OSDS Format Files
are stored in the C:\MICAS-X\Resources\OSDS\OSDS Format Files director when using
source code, or the C:\OCC\MICAS-X Support\ Resources\OSDS\OSDS Format Files
directory when using the executable version of MICAS-X. Because OSDS Format Files are
external to the MICAS-X configuration, care must be taken when moving a configuration
that uses the MSODS Driver from one computer to another. In addition to moving the
MICAS-X configuration file, be sure to also copy the required OSDS Format Files between
computers.

 This Driver supports the Disabled on Startup?, Include Time?, Include State? and
Record Data Stream? parameters, as well as the “Check for Serial Ports” control, which

are discussed in section 7.5.1.

7.5.10 NIDaqAD.vit

 The NIDaqAD (National Instruments Data Acquisition, Analog to Digital) Driver
acquires analog input voltages from a wide variety of National Instruments data
acquisition devices. This Driver is a .vit, so it can be instantiated multiple times within a

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 70

MICAS-X configuration. One instance of this Driver is needed for each NI Device to be
used. Any one NI Device can only have one NIDaqAD Driver associated with it.

 To configure a device, enter the device name in the box in the upper-left-hand
part of the window labeled “Device”. This parameter must match the name of the NI
Daq Device as it appears in MAX (Measurement and Automation Explorer) and how it
appears in the table in the lower right corner of the window. The table displays the NI
Devices that are currently visible to your computer, as well as how many A/D channels
each device has. You can copy and paste a device name from this table to the Device
parameter.

 The “Single-Ended/Differential” parameter directly under the “Device”
parameter is applied to all the channels on the device, and determines the input
configuration for the channels. Note that when this is changed, the chart in the lower
right is updated to reflect the number of channels available in that mode on each
detected device.

 To name a given channel, type the desired label into the appropriate “Name”
control, inside of the array. To the right of the “Name” parameter, select a type of scaling
for the analog input channel. “None” is a 1 to 1 ratio that simply returns the input
voltage. “Polynomial” allows the user to write simple equations using the subsequent
polynomial coefficients (Offset, Linear, Quadratic and Cubic).

 Various thermocouple types are supported using specific Scalings, including E, J,
K and T (e.g. E Type TC). These work only with National Instruments Devices that
directly support Thermocouple measurements, and are specifically designed for the NI
9213 CompactDAQ device. The “TC Mode” box in the lower-right-hand part of the
window allows the user to select which Thermocouple mode should be used in the
Analog to Digital conversion.

 The “Lookup Table” options allow for complicated relationships between
measured voltages and desired engineering units. The user can either fill these in
manually (by inserting numbers in the ‘Raw Value’ and ‘Scaled Value’ fields in the
controls on the left-hand side of the window), or import data from a text file. To do the
latter, use a comma-delimited raw value followed by scaled value, with carriage returns
after each pairing. To import, click the “Import Table X” button at the bottom of the
window. Similarly, to store a user-created table, click the “Export Table X” button directly
below the import button. Up to three Lookup Tables can be used in one instance of the
NIDaqAD Driver.

 The Channel parameter specifies the channel number on the NI Daq Device that
will be used for the MICAS-X Channel. Note that the chart to the lower right shows how
many channels are available for each of the NI Daq Devices visible to your computer.
Channels are numbered beginning with 0. Hence if the device support 8 Channels, they
will be numbered 0 to 7. The Range parameter specifies the voltage gain setting that will

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 71

be used for the Channel. Not all Daq Devices support all the input Ranges available in
this parameter. Refer to the documentation for your NI Daq Device to determine which
input ranges are supported.

 Three “Acquisition Modes” are available for this Driver. Single Point is the default
mode, and acquires a single measurement for each cycle of the Acquisition Loop that
the Driver is in. Burst and Continuous are modes that allow for oversampling and
averaging of the data for increased noise reduction. When either of these modes is
used, the # of Samples to Avg and the Acq Rate (Hz) parameters must be configured.

 In Burst mode, the Driver takes a number of samples each time the Acquisition
Loop cycles. The number of samples times the sample rate should be smaller than the
acquisition loop time. For example, with a 1000 ms (1 Hz) Acquisition Loop, one could
set the # of Samples to Avg to 10 and the Acq Rate (Hz) to 20, so that the burst of
acquisition would take 500 ms. This way the Acquisition Loop can keep up with its 1 Hz
rate without any problem. Note that in Burst mode, all the acquisition happens when
the Acquisition Loop polls the Driver. Thus in the above example, 500 ms of the loop
time would be taken up by the single NIDaqAD Driver. If there are other Drivers in the
same Acquisition Loop, it is possible that the loop may not keep up with its desired rate.
For this reason, it may be a good idea to put the NIDaqAD Driver in its own Acquisition
Loop.

 In Continuous mode, the NI board is configured to acquire data continuously. The
Acquisition Loop will then read and average a number of samples on each iteration. For
this to work, the Acquisition Loop time (e.g. 1000 ms for a 1 Hz loop) must be configured
to be the same as the acquisition time. To average 20 samples in a 1 Hz acquisition loop,
you would then set the Acq Rate to 20 Hz. The advantage of Continuous mode is that
the acquisition is clocked by the NI Device in the background, and the samples are
merely read by the driver each time the acquisition loop cycles. E.g. the Acquisition
Loop does not need to wait for the data to be ready. However, a possible disadvantage
is that this mechanism ties the Acquisition Loop to the NI Device clock. It may therefore
be advisable to put other Drivers in separate loops, particularly if they are tied to
different hardware clocks. Also, with this configuration, it is important for the
Acquisition Loop that contains this Driver to be configured as “Device Timed”.

 The Voltage/Current parameters should be set according to the type of Daq
Device being used. Most Daq Devices are Voltage Devices. Some, like the NI-9208,
measure current from 0 to 20 mA. For these Devices, make this parameter True. Note
that this Driver currently only supports Internal Shunt Resistors with Current Devices.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1.

 The NIDaqAD Driver works in only in MICAS-X for Windows and is not supported
in MICAS-X-RT.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 72

7.5.11 Sequences.vi

 The Sequence Module allows the user to create sequences, or multi-step
commands within MICAS-X. The Sequences Module can be used with or without the
Sequences Driver or the Sequences Display. The Sequences Module Configuration is

described in section 7.4.6.

 If the Sequences Driver is included in the MICAS-X configuration, additional
sequence functionality is provided. By including the Driver, the system has access to two
new sets of Channels. One set of Channels is created from the Sequences names, with
the text “SeqState” prepended. This is an input channel, and it will contain the number
of the step that the sequence was on when the channel was recorded. If a Sequence is
stopped (not running), the SeqState Channel for that Sequence will have a value of NaN.
If a Sequence is Paused, the SeqState Channel for that Sequence will have value that is
the negative of the Step it will resume at when the Sequence is Unpaused. The second
set of Channels has the text “SeqStep” prepended to the Sequence name. These are
output or Controller channels, and they can be used to turn Sequences on and off or
Pause and Unpause the Sequence. By using these Channels, the Set “channel”
command can be used instead of the Start Sequence command, which provides an
additional level of flexibility to the control of sequences. Setting these Channels to NaN
will stop a Sequence. Setting them to a positive number will start a Sequence at that
Step. Setting them to a negative number will pause a Sequence so that it will resume at
the absolute value of that number when an Unpause command is sent.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1.

 The Sequences Driver works in both MICAS-X for Windows MICAS-X-RT.

7.5.12 Timers.vi

 The Timers Driver allows the user to create any number of channels that act as
timers. In addition to the user-created timer channels, whenever the timer driver is
included in MICAS-S, the timers “Run Time”, “Acquire Time”, and “Record Time” are
always automatically included. (Do not add these channels additionally through the
“Timers” section on the left-hand side of the window.)

 To add a timer, click the green insert button. To delete a timer, click the
respective red delete button.

 Name a timer by entering a label into the “Timer” control. To determine the
timer’s starting value, select a number in the “Initial Value” control, located to the right
of the “Timer” control. Timers can also be configured to count up or down using the
“Up/Down” parameters, and to start either Paused or Running, using the “Paused”
parameters.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 73

 The Timers Driver supports several Commands, which are listed and described in

section 14, and which allow the Timers to be Paused, Unpaused, and change direction.

 While a Timer is Paused, it retains its current value, and will resume counting at
that value when it is Unpaused. In addition to pausing a Timer, it is also possible to
Disable a Timer. To Disable a Timer, write the value “NaN” to it. While Disabled, a Timer
will not count up or down.

 The Rollover Value allows a Timer to be configured such that it automatically
restarts when the specified value is reached. E.g. for a Count-Up Timer, a Rollover Value
of 100 will cause the timer to be reset to 0 and restart counting up when a value of 100
has been reached. For a Count-Down Timer, the if the Rollover Value is non-zero and not
NaN, the Counter will rollover when when it reaches 0, and will then reset to the
Rollover Value. In both cases, there is no lost time or jitter when the Timer rolls over. If
the Rollover Value is set to 0 or NaN, then the Timer will not have any Rollover behavior.

 If the Include Rollover Channel? parameter is False: Do Not Include Rollover
Channel, then no additional MICAS-X Channel will be created to contain the Rollover
Value. The Rollover Values will still be present inside the Timers Driver, and if they are
not zero and not NaN, they will be active for the Timers. However, it will not be possible
to change these Rollover Values while MICAS-X is running. The Rollover Value defined in
the Configuration File will be used as long as MICAS-X runs.

 If the Include Rollover Channel? parameter is True: Include Rollover Channel in
Data, then each Timer Channel will automatically have another Channel created in the
Timers Driver as well. These Channels will have the same names as the Timers Channels,
except with the text “ Rolllover” appended. In this case, the Rollover Value for each
Timer can be changed while MICAS-X is running by writing to these Rollover Channels.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1.

 The Timers Driver works in only in both MICAS-X for Windows and MICAS-X-RT.

7.5.13 Triggers.vi

 The functionality of Triggers in MICAS-X is described in section 7.4.8. The
Triggers Module is always included in MICAS-X and can be used with or without the
Triggers Driver. If the Triggers Driver is included, it provides additional functionality
which enhances the utility of the Triggers. By including Triggers Driver in a MICAS-X
configuration, two additional sets of channels are created.

 One of the sets of channels created uses the text “TrigState” prepended to the
each Trigger name. These channels log the state of the Trigger (0-False, 1-Warning, 2-
True, 3-Alarm). The second set of channels uses the text “TrigThr” prepended to the
Trigger name. These channels can be used to control the trigger threshold. These

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 74

threshold channels are output channels that can be changed while MICAS-X is running to
alter how the triggers work. For example, a Trigger could be configured with an initial
threshold of 10, such that if a channel exceeds that value, the Trigger will become True
and execute a Command. Some time after the program has started, the Trigger’s
threshold could be set to Inf, which would effectively disable the Trigger, since the
Channel’s value can never exceed that threshold.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?,

parameters, which are discussed in section 7.5.1.

 The Triggers Driver works in both MICAS-X for Windows and MICAS-X-RT.

7.5.14 Variables.vit

 The Variables Driver allows the user to create additional channels that are not
directly associated with any hardware inputs or outputs. The values of these channels
can be set manually by the user as the program runs, to indicate the values of
experimental parameters, or can be used programmatically by Commands, Sequences,
Triggers, or other mechanisms. The Variables Driver is a newer version of the Manual
Driver, with the main difference being that it is a .vit and can therefore be instantiated
more than once in a given MICAS-X configuration.

 To create a Variable, click the green “Insert” button. Delete a Variable by
pressing the corresponding red “Delete” button.

 Name the Variable by entering the desired text in the “Variables” field.

 Use the “Initial Value” box to the right of the respective Variable entry to define
the value that the channel will have when the program first starts running.

 This Driver supports the Initial Mode, Disabled on Startup?, Include Time?, and

Include State? Parameters, which are discussed in section 7.5.1.

 The Variables Driver works in both MICAS-X for Windows and MICAS-X-RT.

7.6 Drivers Available for Additional Cost

7.6.1 2D Array.vit

 The 2D Array Driver allows one to implement a two dimensional array of data
that can be used programmatically throughout the MICAS-X program. Multiple 2D
arrays can be created by using this driver repeatedly. This type of array can be used, for
example, in sequences, to step through a set of process variables that are each an array
of values and cannot be easily specified by an equation.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 75

 Enter a name for the array in the “Array Name” parameter. This name will be
used to read and write the array values. In addition, it will be used as the basis for
several other channels that the driver creates. For an array with the name “ArrayName”,
there will also be a channels called “ArrayName Row Index” and “ArrayName Column
Index”, which will be used to specify the location within the array to read or write data.
The Channel “ArrayName Time” is similar to the Time channel every driver has, and
records the time when the Array values were recorded, if the “Include Time” parameter
is True. If the “Include Size” parameter is True, then another two channels named
“ArrayName Row Size” and “Array Name Column Size” will be created that are read-only
channels and which return the number of elements in the Array per row or column,
respectively. (Note that the ArrayName Index channels can have values from 0 to
ArrayName Size Of Dimension – 1.)

 If “Allow Array to Grow” is not checked, the array size will be fixed by the number
of entries in the Values list in the configuration. Trying to set either of the ArrayName
Index channels past the ArrayName Size – 1 will result in an error. If this parameter is
checked, then setting the ArrayName Index to a value greater than ArrayName Size and
then writing a value to the Array channel will cause the Array to be extended as needed,
with zeros placed in any new elements between the end of the old array and the new
value.

 Use the Delete and Insert buttons to remove and add rows of values in the array.
The Import from File button can be used to read an array of data from a file. This file
must be formatted with entries in the same row separated by commas and ones in
separate rows separated by new lines. This is shown in the below format.

2,4,5

6,7,8

9,2,0

 The Array Driver supports two Commands. ClearArray sets all the array elements
to the value 0. It does not change the number of elements in the Array. ShowArray
causes a window to be displayed which summarizes the current state of the Array. It
shows the values in the Array, the Array Index, the Array Size, and several configuration
parameters which affect how the Array works. Note that if the state or contents of the
Array change, this display does not update to reflect those changes. It only contains a
snapshot of the Array state when the display was opened.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 76

7.6.2 Agilis.vit

 The Agilis driver is used to control Agilis motorized mirror mounts. The Agilis
controller must be in remote mode to accept commands from MICAS-X. It is put in this
mode whenever the driver starts or is enabled, and is put in local mode when it ends of
is disabled. The SetRemote and SetLocal commands can also be used to change mode. If
include State? Is true, bit 8 will toggle so that in local mode the channel is 256 and in
remote mode it is 0.

 In Local mode, the manual controller can be used to move the axes, but MICAS-X
will not be able to read values and it will not respond to MICAS.

 The COM port must match the serial port the Agilis device is connected to. The
serial ports in use can be found with the 'Check for Serial Ports” button. They can also be
found with the windows device manager.

 The delete and insert buttons to the right of the main panel allow the user to add
new axes. Each axis must have a name entered in the name box. Channel is used only for
the UC8 when it has a value of 1,2,3, or 4. For the UC2 use a value of 0 for the Channel.
Axis # defines the axis to be controlled and can have a value of 1 or 2. Invert will invert
which direction is considered positive for the axis. “# of Steps” defines the initial value of
how many steps of the axis to move when given the “Move Steps” Command. Jog Speed
determines how fast the axes will move and can have a value of -3, -2, -1, 1, 2, or 3.

 If “Read Back Positions” is true, the position channel will be created for each
axes. The Read position channels are of limited use since step movements are uncertain
and vary in magnitude and direction.

 This Driver supports the Disabled on Startup?, Include Time?, Include State?, and

Initial Mode? Parameters, which are discussed in section 7.5.1.

7.6.3 Airmar.vit

 The Airmar Driver allows acquisition of GPS, attitude, motion, wind, and
meteorological data from the Airmar 200WX and related weather stations. The Airmar
200WX supports a large number of data sentences. Currently, the MICAS-X Driver for
the Airmar supports the GGA, ZDA, VTG, ROT, MDA, MWV, XDRB, and XDRA sentences,
which are the sentences that are enabled by default. Support for additional sentences
could easily be added in the future if the need arises.

 To configure the Airmar Driver, simply place an X in the box next to each
sentence that you wish to acquire. Enter the number of the COM (serial) port that the
Airmar is connected to on your computer, and enter the repetition rate in the Rate (sec)
parameter. The repetition rate can have a resolution of 0.1 seconds. Note that this
value is sent down to the Airmar during configuration, so that it streams data at this

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 77

rate. It is important to make sure that the MICAS-X Acquisition Loop that the Airmar
Driver is assigned to is configured to accommodate this acquisition rate.

 When the Airmar is powered on, it always begins communicating at 4800 baud.
MICAS-X switches the Airmar automatically to 38400 baud, which reduces
communication latency and allows for more data to be transmitted at a given loop rate.
Note that it is possible to select data sentences that send more data than fits into a
selected loop rate. Using 38400 baud helps alleviate this problem, but care must be
taken when configuring the Airmar to avoid this communication limitation.

 This Driver supports the Disabled on Startup?, Include Time?, Include State?, and

Record Data Stream? Parameters, which are discussed in section 7.5.1.

7.6.4 Alicat.vit

 The Alicat Driver is used to interface to Alicat Flow Controllers. One instance of
this Driver can communicate to any number of Alicat Flow Controllers that are on the
same serial port, using RS232 or RS485 serial communications. For Flow Controllers that
are on separate, individual serial ports, multiple instances of this Driver can be used. Be
sure to define a prefix for each instance when using multiple instances of any Driver or
MICAS-X module.

 Note that MICAS-X communicates to the Flow Controllers in polled mode. If a
Flow Controller is set to Streaming mode, it must be reconfigured following the
procedure in the Alicat manual.

 Enter the serial port number to be used by the Flow Controller(s) in the COM
Port field.

 For each Flow Controller on that serial port, enter the eight parameters in the
Flow Controllers array. The ID is a one letter code that acts as an address for the Flow
Controllers. This comes set to “A” as a factory default. If multiple Flow Controllers are
configured on a single serial port, each one must have a unique ID. This ID can be set via
hyperterminal or another serial communication program, or in many cases, by using the
interface panel on the front of the flow controller itself. Refer to the Flow Controller
documentation for more information.

 The Name field is used as a descriptive identifier within MICAS-X. This can be set
to the same value as the ID, or, more usefully, to a short description of the function of
the flow controller. This name is used as the root of all the channel names that the
Driver creates for the Flow Controller.

 Each Flow Controller can be configured to control in mass flow or volume flow.
This configuration must be done externally from MICAS-X according to the procedure
documented in the Alicat manual. Regardless of which mode the Flow Controller is
using, it will report its flow both in mass flow and volume flow units. The Vol Flow Units

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 78

and Mass Flow Units fields allow the operator to enter these units as text, which is used
in creating the relevant channel names.

 The Full Scale Flow parameter is used to specify the nominal full scale flow of the
Flow Controller. This must match the specification of the Flow Controller, so that MICAS-
X can control the set points appropriately. The units of this parameter must match the
units that the Flow Controller specifications show for its full scale flow.

 The Mode parameter tells MICAS-X which flow mode the Flow Controller is
configured to operate in. MICAS-X uses this information to create the name of the
SetPoint channel and give it the correct units. This mode must match the mode that the
Alicat is configured to run in, as described above.

 The Initial SetPoint parameter tells MICAS-X what value to initialize the flow
controller to when the program starts. The units of this value are those specified by the
Mode control.

 The Type parameter tells MICAS-X whether the Alicat is a Flow Controller,
Pressure Controller, or Pressure Gauge. The data channels created for the Alicat depend
on which type of device is selected. Also note that Alicat Flow Meters can be used with
this Driver when they are defined as Flow Controllers, though a future upgrade to this
Driver will clarify how Flow Meters are handled.

 The Include Valve Position checkbox should only be marked for Alicat controllers
that have the RVD option. This option allows the controller’s internal valve position (0 to
100%) to be reported in the serial data stream as well as on the front panel. As of
20191022, only Pressure Controllers have been tested with this option.

 The Include Gain Channel? parameter should be set True only if one needs to be
able to set or read the PID Gains for the Alicat instruments. If this parameter is set to
True, a new channel called “Alicat Gain Channel” is created. In addition, six new
Commands are made available: ReadDGain, ReadIGain, ReadPGain, WriteDGain,
WriteIGain, and WritePGain. These Commands make use of the Alicat Gain Channel to
read and write the PID gains from and to the individual Alicat units. Refer to the

Command documentation (Section 14) for more information on using these commands.
This mechanism for reading and setting gains is less intuitive than if each Alicat had
three additional channels for the three gains. However, due to the communication
protocol used by the Alicats, continuously reading those channels in the Acquisition
Loop could introduce significant latencies. The current solution, using Commands and
the single Alicat Gain Channel, reduces the communication overhead significantly.

 This Driver supports the Disabled on Startup?, Include Time?, Include State?, and

Initial Mode parameters, which are discussed in section 7.5.1.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 79

7.6.5 Aries Drive.vit

 The Aries Drive Driver works with a Aries IPA Motion Controller from Parker
Hannefin. It is designed to operate a single axis. It is assumed that the IPA controller is
configured with the Parker Hannefin software before it is used with MICAS-X.

 MICAS-X communicates with the motion controller via Ethernet. The IP Address
field is used to specify the IP address of the IPA controller. The Initial Position (mm) and
Initial Velocity (mm/min) parameters are used to set the values of the motor position
and jog velocity. (Note that this is the velocity used when the motor is commanded to
move. The motor is not commanded to move at initialization.) The Max Velocity
(mm/min) is used to limit the commanded velocity. Any velocity set point sent to the
Driver that is greater than this value will be limited to this value. The Counts/mm
parameter specifies the calibration for the motor system from counts to mm. The
Include Time? Parameter is used to determine if the Driver prepends its data channels
with a time-stamp channel.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1.

7.6.6 Controllers.vit

 The Controllers Driver is used to create control loops, such that the value of a
controller (output) Channel is determined by the value(s) of one or more other
Channels. Several control algorithms are provided, as described below. Depending on
which Controller Type is chosen, various parameters are required to fully define how the
Controller will work. In the descriptions below, the Controller Type(s) that use each
parameter are listed under each parameter’s description.

 The Controllers list on the left of the configuration screen shows the Controllers
that are defined. To add a new controller, click on one of the Insert buttons to its right.
Click on the associated Delete button to remove a Controller.

 Once a Controller has been added, click on the Controller name in the Controllers
list to highlight it and enable editing for that Controller. The name of the Controller can
be edited in the SetPoint Channel parameter. This parameter also is used as the name of
a new Channel created for the control loop, which is the SetPoint for the control loop.
(Note that Followers are an exception and have no SetPoint Channel. This parameter is
still used to define a name for the Follower definition, but that name is only used in the
Controllers list to identify that Follower.)

 Set the Controller Type parameter to the desired selection. The options are:
Mass Flow, Volume SP
Volume Flow, Mass SP
Thermostate

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 80

Simple Control
PID
Follower

 The behaviors and associated parameters for each of these selections are
described in the sections below.

Mass Flow, Volume SP

 This Controller is designed to convert a Volume Flow SetPoint (from the operator
or from another source) to a Mass Flow SetPoint that is then used to control a Mass
Flow Controller. The conversion from specified Volume Flow to equivalent Mass Flow is
done via the Ideal Gas Law, and hence requires knowledge of the temperature and
pressure of the gas being controlled.

 The Output Channel parameter must be set to the Mass Flow Controller SetPoint
Channel. E.g. it is assumed that before this Controller is configured, a Mass Flow
Controller (such as an Alicat) has already been added to MICAS-X. By assigning the
SetPoint output Channel of the Mass Flow Controller as this Controller’s Output
Channel, this Controller will in turn set the Mass Flow Controller SetPoint according to
the desired flow conversion.

 Set the Pressure Channel to a MICAS-X Channel that contains the pressure of the
gas being controlled, in mBar. If no pressure transducer is available, it may be possible to

create a Manual Channel (section 7.5.7Error: Reference source not found) so that
the operator can manually enter an appropriate pressure while the program is running.
If a pressure transducer is being measured but has different units than mBar, an

Equation Channel (section 7.5.6) can be used to convert the measured pressure into
mBar.

 Set the Temperature Channel to a MICAS-X Channel that contains the
temperature of the gas being controlled, in degrees C. If no temperature transducer is

available, it may be possible to create a Manual Channel (section 7.5.7)so that the
operator can manually enter an appropriate temperature while the program is running.
If a pressure transducer is being measured but has different units than degrees C, an

Equation Channel (section7.5.6) can be used to convert the measured pressure into
degrees C.

 The Initial SetPoint parameter determines the value that the SetPoint Channel is
initialized to when MICAS-X starts up. The Deadband parameter defines a minimum
amount of change that a new calcaulation of the Output Channel must have relative to
the current Output Channel value before the Output Channel will actually be written to.
E.g. if the Deadband is non-zero, (for example, 100), then the Output Channel will only
be updated if the calculated output is more than 100 different from its current value.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 81

 The Min Output and Max Output parameters allow one to specify minimum and
maximum limits that the Output Channel can be set to. These parameters should
normally be set to the limits that the associated Mass Flow Controller can accept. A
common mistake is to leave the both of these parameters set to their default value of 0,
which will cause the Controller to always output a value of 0.

 The Slope and Offset parameters allow the Output Channel to be linearly scaled
if needed. If a Mass Flow Controller is being used that accepts setpoints in units of mass
flow, then a Slope of 1 and an Offset of 0 can be used. In this case, the Output Channel
will have the same units as the Volume Flow SetPoint, except in mass instead of volume.
The Slope and Offset can also be used to change the flow to other units. E.g. if the
Volume SetPoint were in cc/sec, a Slope of 60 and Offset of 0 could be used to output a
Mass Flow in cc/min. Another case would be when the Mass Flow Controller is
controlled by a voltage, such that 0V is no flow and 10V is full scale flow. In this case, the
Slope and Offset would be calculated to convert the Mass Flow from mass flow units to
Volts. Another common mistake in configuring these Controllers is to leave the Slope
and Offset parameters at their default values of 0, which will cause the Controller’s
Output Channel to always have a value of 0.

Volume Flow, Mass SP

 This Controller is designed to convert a Mass Flow SetPoint (from the operator or
from another source) to a Volume Flow SetPoint that is then used to control a Volume
Flow Controller. The conversion from specified Mass Flow to equivalent Volume Flow is
done via the Ideal Gas Law, and hence requires knowledge of the temperature and
pressure of the gas being controlled.

 The Output Channel parameter must be set to the Voume Flow Controller
SetPoint Channel. E.g. it is assumed that before this Controller is configured, a Volume
Flow Controller (such as an Alicat) has already been added to MICAS-X. By assigning the
SetPoint output Channel of the Volume Flow Controller as this Controller’s Output
Channel, this Controller will in turn set the Volume Flow Controller SetPoint according to
the desired flow conversion.

 Set the Pressure Channel to a MICAS-X Channel that contains the pressure of the
gas being controlled, in mBar. If no pressure transducer is available, it may be possible to

create a Manual Channel (section7.5.7)so that the operator can manually enter an
appropriate pressure while the program is running. If a pressure transducer is being

measured but has different units than mBar, an Equation Channel (section 7.5.6) can be
used to convert the measured pressure into mBar.

 Set the Temperature Channel to a MICAS-X Channel that contains the
temperature of the gas being controlled, in degrees C. If no temperature transducer is

available, it may be possible to create a Manual Channel (section7.5.7)so that the
operator can manually enter an appropriate temperature while the program is running.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 82

If a pressure transducer is being measured but has different units than degrees C, an

Equation Channel (section7.5.6) can be used to convert the measured pressure into
degrees C.

 The Initial SetPoint parameter determines the value that the SetPoint Channel is
initialized to when MICAS-X starts up. The Deadband parameter defines a minimum
amount of change that a new calcaulation of the Output Channel must have relative to
the current Output Channel value before the Output Channel will actually be written to.
E.g. if the Deadband is non-zero, (for example, 100), then the Output Channel will only
be updated if the calculated output is more than 100 different from its current value.

 The Min Output and Max Output parameters allow one to specify minimum and
maximum limits that the Output Channel can be set to. These parameters should
normally be set to the limits that the associated Volume Flow Controller can accept. A
common mistake is to leave the both of these parameters set to their default value of 0,
which will cause the Controller to always output a value of 0.

 The Slope and Offset parameters allow the Output Channel to be linearly scaled
if needed. If a Volume Flow Controller is being used that accepts setpoints in units of
volume flow, then a Slope of 1 and an Offset of 0 can be used. In this case, the Output
Channel will have the same units as the Mass Flow SetPoint, except in volume instead of
mass. The Slope and Offset can also be used to change the flow to other units. E.g. if the
Mass SetPoint were in cc/sec, a Slope of 60 and Offset of 0 could be used to output a
Volume Flow in cc/min. Another case would be when the Volume Flow Controller is
controlled by a voltage, such that 0V is no flow and 10V is full scale flow. In this case, the
Slope and Offset would be calculated to convert the Volume Flow from volume flow
units to Volts. Another common mistake in configuring these Controllers is to leave the
Slope and Offset parameters at their default values of 0, which will cause the Controller’s
Output Channel to always have a value of 0.

Thermostat

 Thermostat control, also known as On/Off control, is the simples control loop
algorithm. When the Process Variable is below the SetPoint, the control loop turns the
output on. When the Process Variable is above the SetPoint, the control loop turns the
output off. Hysteresis or Deadband adds a slight improvement to this simple algorithm.

 The SetPoint Channel is the name of the control loop and of the new Channel
created which allows the operator to set the desired SetPoint for this loop. The Output
Channel parameter specifies the controller (output) Channel which is written to by this
loop. Typically, this Channel will be a digital Channel, with just two states. Most often,
those states will be 0 (off), and 1 (on). A digital output bit on an NI Daq Device would be
a typical channel used for this purpose.

 The Process Variable Channel parameter specifies the signal that is compared to
the SetPoint Channel to determine if the Output Channel should be Off or On. The

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 83

Process Variable Channel and the SetPoint Channel should have the same physical units.

If necessary, an Equation Channel (section7.5.6) can be used to convert the physical
units of another Channel in order to get appropriate units for the Process Variable.

 The Initial SP parameter specifies the value that the SetPoint Channel will be
given when MICAS-X first starts.

 The Off Value and On Value determine the values that the Output Channel will be
set to when the control loop wants to turn the output off or on. Normally the Off value
should be set to 0 and the On value should be set to 1. This will turn a digital bit True
when the loop is On, and False when the loop is Off. The direction of the control loop
can be reversed by exchanging these values. For example, if the Off Value is 1 and the On
value is 0, then the Output Channel would be set to 1 whenever the Process Variable
(such as a temperature) was below the SetPoint Channel value. This type of loop could
be used as a hating loop as opposed to the cooling loop that the opposite settings would
create.

 Additionally, other values of the Off Value and On Value could be used to set an
analog output channel to two distinct values depending on the state of the control loop.
Using values of 0 and 5, for example, could allow one to use an analog output voltage
channel as a surrogate for a digital output channel.

 One common error in setting up these loops is to leave both the Off Value and
the On Value at their defaults of 0. This will cause the Output Channel to never change,
regardless of what the control loop is trying to do.

 The final parameter for this type of controller is the Deadband. This parameter
adds hysteresis to the thermostatic control. When this parameter is 0, the state of the
Output Channel will change every time the Process Variable passes the SetPoint Channel
value. When the Process Variable is noisy, this can cause rapid changes in the Output
Channel, which may not be desirable. If the hysteresis is non-zero, noise immunity is
provided. As an example, consider a temperature control loop with a SetPoint of 50
degrees and a hysteresis of 2 degrees. This loop will turn the Output Channel On when
the temperature rises above 50 degrees. At that point, the threshold for the loop is
internally changed from 50 degrees to 48 degrees, the SetPoint minus the Hysteresis (or
Deadband). Thus the Output Channel will not turn Off until the temperature drops
below 48 degrees.

Simple Controller

 The Simple Controller option implements a semi-proportional control algorithm.
The SetPoint Channel is used to name the setpoint channel for the Controller. The
Output Channel is the controller (output) Channel that this Controller sets. The Process
Variable Channel parameter specifies the Channel that is used to compare to the
SetPoint Channel to determine how the Controller should react. The Initial SP parameter
determines the value of the SetPoint Channel when MICAS-X starts.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 84

 The Simple Control algorithm compares the SetPoint Channel to the Process
Variable Channel. If the Process Variable is below the SetPoint Channel, the algorithm
adds the Step Size (V) to the Output Channel. If the Process Variable is above the
SetPoint Channel, the algorithm subtracts the Step Size (V) from the Output Channel.
Thus the Step Size defines fixed amount that the algorithm will move the output on each
iteration. This value can be made negative to invert the direction of the control loop.
Althought the name of the Step Size (V) parameter implies that the units of this
parameter are in Volts (which often they are), they are actually in whatever units the
Output Channel has.

 The Deadband parameter is used to specify a “delta” or a minimum amount that
the Process Variable must differ from the SetPoint Channel before the Output will be
changed.

 The Initial SetPoint (V) defines the initial value of the Output Channel when
MICAS-X first starts up. The Min Output and Max Output parameters define the limits
that the algorithm can drive the Output Channel to. These parameters keep the control
loop from running away when it saturates.

 The final parameter is Start-up, which has the options Disabled (-1), Manual (0)
and Control Loop (1). As for PID Controllers, the Simple Controllers have three modes,
Disabled, Manual and Control Loop. When set to Control Loop, the operation is
described as above. When set to Manual, the Simple Controller’s SetPoint Channel has
the same units as the Output Channel, rather than as the Process Variable Channel, and
the SetPoint Channel value is sent directly to the Output Channel. When switching
between Manual and Control Loop, the program automatically converts the SetPoint
Channel’s value in such a way as to hold the loop at the current value. E.g. when
switching from Control Loop to Manual, the current value of the Output Channel is
automatically written to the SetPoint Channel. When switching from Manual to Control
Loop, the current value of the Process Variable Channel is automatically written to the
SetPoint Channel. When in Disabled Mode, the Controllers Driver does not write to the
Output Channel at all. This mode allows for multiple control loops to be defined using
the same Output Channel, as long as only one of the loops is enabled.

 To change the Mode for a Simple Controller, two options are available. If the
Simple Controller is configured to appear on the Control tab of MICAS-X, a Mode switch
will automatically be placed to its right. A second way to change the mode is use the Set
Command to set the MICAX-X Channel that has the same name as the SetPoint Channel,
but with the word “Mode” preceding it.

PID

 The PID Controller option implements a standard Proportional-Integral-
Differential control algorithm. The SetPoint Channel is used to name the setpoint
channel for the Controller. The Output Channel is the controller (output) Channel that

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 85

this Controller sets. The Process Variable Channel parameter specifies the Channel that
is used to compare to the SetPoint Channel to determine how the Controller should
react. The Initial SP parameter determines the value of the SetPoint Channel when
MICAS-X starts.

 The Kc, Ti(min) and Td(min) parameters specify the Proportional Gain, Integral
Gain (in units of Kc * minutes) and the Derivative Gain (in units of Kc / minutes). The Min
Output and Max Output parameters impose limits on how far the PID algorithm can set
the Output Channel. These parameters keep the control loop from running away when it
saturates.

 The Slope and Offset parameters are used to scale the Output Channel in Manual
mode, and the inverse of this linear relationship is used to calculate a SetPoint when the
Controller switches from Control Loop to Manual mode. E.g. these parameters allow the
Output Channel and the SetPoint Channel in Manual mode to have different units. As an
example, assume that a pressure is being controlled by changing the value of a flow. The
SetPoint Channel (in Control Loop Mode) would have units of pressure. The Process
Variable Channel would have units of Flow. But assuming the flow controller required a
voltage input, the Output Channel would have units of Volts. In Manual mode, the Slope
and Offset would be used to calculate the appropriate Voltage for a Manual SetPoint in
units of Flow. When the loop is changed from Control Loop mode to Manual mode, the
inverse relationship would be used to calculate the Setpoint in Flow based on the
current value of the Output Channel in Volts.

 The final parameter is Start-up, which has the options Disabled (-1), Manual (0)
and Control Loop (1). When set to Control Loop, the loop operates using the full PID
logic. When set to Manual, the SetPoint Channel directly controls the Output Channel.
When switching between Manual and Control Loop, the program automatically converts
the SetPoint Channel’s value in such a way as to hold the loop at the current value. E.g.
when switching from Control Loop to Manual, the current value of the Output Channel,
scaled by the Slope and Offset, is automatically written to the SetPoint Channel. When
switching from Manual to Control Loop, the current value of the Process Variable
Channel is automatically written to the SetPoint Channel. When in Disabled Mode, the
Controllers Driver does not write to the Output Channel at all. This mode allows for
multiple control loops to be defined using the same Output Channel, as long as only one
of the loops is enabled.

 To change the Mode for a PID Controller, two options are available. If the PID
Controller is configured to appear on the Control tab of MICAS-X, a Mode switch will
automatically be placed to its right. A second way to change the mode is use the Set
Command to set the MICAX-X Channel that has the same name as the SetPoint Channel,
but with the word “Mode” preceding it.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 86

Follower

 Followers are a unique type of Controller. Followers have no SetPoint Channel.
The SetPoint Channel parameter is renamed Controller Name for Followers, and is used
only to identify the Controller. A Follower is intended as a way to broadcast a Channel’s
value through an Analog Output or some other output Channel. E.g. the Output Channel
for a Follower is linearly proportional to the current value of the Process Variable
Channel. The Slope and Offset parameters specify the conversion to use from the
Process Variable Channel to the Output Channel. To calculate the Output Channel, the
Process Variable Channel’s value is first multiplied by the Slope, then the Offset is added.
Hence the Offset has the same units as the Output Channel, and the Slope has units of
the Output Channel units divided by the Process Variable Channel units.

 The Min Output and Max Output parameters are used to limit the range that the
Output Channel can be set to. For an analog output Voltage channel, these parameters
would normally be set to the lower and upper ranges of the analog output channel.

 This Driver supports the Intial Mode, Disabled on Startup?, Include Time?, and

Include State? Parameters, which are discussed in section 7.5.1.

 The Controllers Driver works in both MICAS-X for Windows and MICAS-X-RT.

7.6.7 Expressions.vit

 The Expressions driver is very similar to the Equations driver, but executes much
faster and has a richer syntax. It allows the user to create new channels based on
previously available channels, or to set existing output (controller) channels to values
based on equations made up of existing channels.

 To insert a new expression, press the green Insert button to the right of the
“Equations” section on the left side of the screen. To delete an expression, press the red
Delete button next to the corresponding equation. To edit an expression, first highlight it
in the Equations list by clicking on it. The Equation’s parameters will then be shown in
the parameters box below the Equations list.

 The value calculated by an Equation can either be used as the value of a new
channel defined by that Equation, or can be sent to an existing output (controller)
channel. Choose which functionality you wish by setting the Target parameter to False
(New Channel) to create a new channel with the calculated value, or to True (Existing
Channel) to send the calculated value to an existing controller channel.

 When the Target parameter is set to New Channel, the Target Channel parameter
is used to name the new channel. When the Target is set to Existing Channel, the Target
Channel is a drop down list of all the existing controller channels. Make sure that a
controller channel is only targeted by one Expression. E.g. the value of the Target

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 87

Channel will be indeterminate if more than one location in MICAS-X is attempting to set
its value.

 Expressions are made up of Channels, operations, functions, and constants. The
Expressions Driver is based on the Expression Parser LabVIEW project from GPower.
Refer to the document “Expression_Parser_User_Guide.pdf” in the Documents directory
for information on the syntax used in Expressions.

 When writing the expression, select the entirety of a channel name from the
‘Channels’ list in the center of the window, and press CTRL-C to copy this into the
clipboard. Paste the name of the selected channel in the large “Expression” box by
clicking inside the Expression box and pressing CTRL-V. You can use multiple functions
and channels to create the desired Expression.

 If multiple Channel Lists have been created in the configuration that you are
editing, a specific Channel List can be chosen with the Channel List control so that the
Channels displayed are limited to those in that list. This sorting can make it easier to
find specific channels when a configuration contains many channels.

 To confirm that the syntax of the Expression is correct, copy and paste your new
Expression into the “Test Expression” box located in the upper-right portion of the
window. The channels that are used in the Expression will populate the “Channels in
Test” list. If they do not one or more is not spelled and capitalized exactly as in the
“Channels” list. To the right of each channel, a test value can be selected. If functional, a
result will appear in the “Result” indicator found to the right of the “Test Expression”
input control.

 If there is an error in your test of the equation, the “Test Expression Error” box in
the lower-right-hand portion of the window will indicate the error status (present or
not), give the error code, and describe the error.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1.

7.6.8 File Reader.vit

 The File Reader driver provides data to MICAS-X after reading in a file of
previously recorded or created data. It can be used to simulate data or playback data
that was acquired earlier. It reads in a .txt or .csv file, and sends out a row of data per
acquisition loop. The file should contain one or more columns of numeric data, with one
or more rows. Each column can be used as a channel, though extra columns at the end
of a row can be ignored. Values should be separated by commas.

 The file can have an optional header, which will be ignored when MICAS sends
data during acquisition. The header will usually define the channels, and will be
displayed in the “Data File Preview” to help with configuring the channels.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 88

 Use the “File to Read” controller to select which file you want to read into
MICAS-X. If there is a header on the file defining channel names, use the “Import
Channel Names”. The channels can also be added manually by adding a new channel or
changing existing names. Each channel has three parameters. The first is the “Value to
Use if No Data Available” this is the value that will be assigned to the channel if there is
not data in that column. The “Noise to Add” parameter defines how much randomness
to add to the values that are assigned to the channel. This helps a generated file
simulate reality better. The “Use NaN or Value When Disabled” parameter defines
whether or not the channel will be assigned the default value or Not a Number. The
Repeat? Parameter defines whether or not the data in the file will be looped or if it will
be used only once.

 This driver supports the Disabled on Startup? Include Time? And Include State?
Parameters.

7.6.9 GRIMM 1p109 OPC.vit

 The GRIMM 1p109 OPC Driver acquires data from the model 1.109 Optical
Particle Counter made by GRIMM. The “COM Port” parameter defines which serial port
will be used by the scale. The “Baud Rate” parameter is used to specify the Baud Rate
which the OPC is currently configured to use. The default for this value is 9600.

 This Driver supports the Disabled on Startup?, Include Time?, Include State?, and

Record Data Stream? Parameters, which are discussed in section 7.5.1.

7.6.9.1 Look Up Table.vit

 The Look Up Table Driver is used to scale channel values via interpolation of a
look-up table. This allows channels to be scaled in ways that are non-linear or cannot be
approximated easily by an equation. The Look Up Table Driver uses the value of an
existing channel, interpolates a new value from the associated look-up table for that
channel, and then write the new value to a new channel.

 There are two main components to the Look Up Table configuration, the
Channels list and the Look Up Tables. The Channels list defines which Channels will be
used as input values and will use the look-up tables. The Look Up Tables are one or more
tables of data to use for interpolation. Thus different Channels can be configured to all
use the same Look Up Table, or they can each have their own Table, as needed.

 Start configuring this Driver by defining the Look Up Tables. Press the Insert
button to the right of the Look Up Tables list to add a new table. (The Delete buttons can
be used to remove an unwanted table from the list.) When the new entry is highlighted
in the list, edit the name in the Look Up Table Name field. Keep that entry highlighted in
the list, and add the table data. This can be done either by importing a text or .csv file
that contains the data (by pressing the Import Table button), or by entering the values

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 89

directly in the Look Up Table arrays on the right. A table must have as many “raw” values
as it has “scaled” values. The text or .csv file should contain two columns of data values,
separated by commas, with no headers.

 A Look Up Table can be exported by pressing the Export Table button. This will
create a text file with two columns of data, separated by commas.

 Once your table(s) are created, define the channels that will be scaled with this
Driver. In the Channels array on the left, press the Insert button to its right to add a new
entry at the desired location. (The Delte buttons can be used to remove an unwanted
channel definition from the list.) Click on the Source Channel parameter to see a list of
all the existing Channels in MICAS-X. Select the one which you want scaled. Enter a
name for the resulting Scaled Channel in the Target Channel parameter. Finally, click on
the Look Up Table parameter to select which Look Up Table you wish to use for
interpolation of the Source Channel.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?,

Parameters, which are discussed in section 7.5.1.

7.6.9.2 M-Link.vit

This Driver is used in conjunction with the M-Link Server Instrument 7.7.4 to
enable one instance of MICAS-X to communicate with and control another instance. The
two instances must be on a network such that they are visible to each other. The “client”
instance, running this Driver, must know the IP address of the “server” instance, as well
as the name of the configuration file used by the “server” instance. A current copy of
this configuration file must be present on the “client” computer in the support directory,
so that when the “client” MICAS-X is run, it can read that configuration file to know the
Channels, Commands, Sequences, etc., that are available on the “server” instance.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?,

Parameters, which are discussed in section 7.5.1.

7.6.9.3 MCCDaqAD.vit

 The MCCDaqAD (Measurement Computing Data Acquisition, Analog to Digital)
Driver acquires analog input voltages from a wide variety of Measurement Computing
multifunction data acquisition devices. This Driver is a .vit, so it can be instantiated
multiple times within a MICAS-X configuration. One instance of this Driver is needed for
each MCC Device to be used. Any one MCC Device can only have one MCCDaqAD Driver
associated with it.

 To configure a device, enter the device name in the box in the upper-left-hand
part of the window labeled “Device”. This parameter must match the name of the MCC
Daq Device as it appears in the MCC Instacal program. Single-Ended vs. Differential input
configurations must be done in the Instacal program, not in the MICAS-X configuration.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 90

 To name a given channel, type the desired label into the appropriate “Name”
control, inside of the array. To the right of the “Name” parameter, select a type of scaling
for the analog input channel. “None” is a 1 to 1 ratio that simply returns the input
voltage. “Polynomial” allows the user to write simple equations using the subsequent
polynomial coefficients (Offset, Linear, Quadratic and Cubic).

 The “Lookup Table” options allow for complicated relationships between
measured voltages and desired engineering units. The user can either fill these in
manually (by inserting numbers in the ‘Raw Value’ and ‘Scaled Value’ fields in the
controls on the left-hand side of the window), or import data from a text file. To do the
latter, use a comma-delimited raw value followed by scaled value, with carriage returns
after each pairing. To import, click the “Import Table X” button at the bottom of the
window. Similarly, to store a user-created table, click the “Export Table X” button directly
below the import button. Up to three Lookup Tables can be used in one instance of the
MCCDaqAD Driver.

 The Channel parameter specifies the channel number on the MCC Daq Device
that will be used for the MICAS-X Channel. Channels are numbered beginning with 0.
Hence if the device support 8 Channels, they will be numbered 0 to 7. The Range
parameter specifies the voltage gain setting that will be used for the Channel. Not all
MCC Daq Devices support all the input Ranges available in this parameter. Refer to the
documentation for your MCC Daq Device to determine which input ranges are
supported.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1.

 The MCCDaqAD Driver works in only in MICAS-X for Windows and is not
supported in MICAS-X-RT.

7.6.10 MCCDaqDA.vit

 The MCCDaqDA (Measurement Computing Data Acquisition Digital to Analog)
Driver is used to set output voltages using the DA channels on Measurement Computing
multifunction Daq devices. The “Device” parameter must match the name of the MCC
Daq Device as it appears in the Measurement Computing Instacal program.

 To create a new channel, type the desired label into the “Name” control. The
Slope and Offset parameters can be used to apply a linear scaling to the data being
passed to the output channel. Normally, set the Slope to 1 and the Offset to 0, and the
output voltage will be equal to the value of the channel in MICAS-X. However, the Slope
and Offset can be used to map engineering units of a MICAS-X channel into voltage. For
example, if the channel was named Flow (cc/s) and a setting of 20 cc/s required a setting
of 5 V, then a Slope of .25 and an Offset of 0 would map the channel’s value of 20 to a
voltage output of 5V.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 91

 The “Initial Value” is the value, in engineering units, used as a SetPoint when the
program first starts. The “Channel” parameter specifies the number of the analog
output channel to be used for the MICAS-X channel. Note that the chart to the lower
left shows how many analog output channels are available for each device that is
detected.

 The “Range” parameter defines the output voltage range for an analog output
channel in the MICAS-X system. Note that not all MCC A/D boards support all possible
output ranges available in the selection.

 The red delete and green insert buttons to the right of the window can be used
to delete and create new channels, respectively.

 This Driver supports the Disabled on Startup?, Include Time?, Include State?, and

Initial Mode parameters, which are discussed in section 7.5.1.

 The MCCDaqDA Driver works in only in MICAS-X for Windows and is not
supported in MICAS-X-RT.

7.6.11 MCCDaqDI.vit

 The MCCDaqDI (Measurement Computing Data Acquisition Digital Input) is used
to read digital inputs as channels using Measurement Computing multifunction Daq
hardware. The “Device” parameter must match the name of the MCC Daq Device as it
appears in the Instacal program.

 To create a new digital output Channel used within the MICAS-X program, type
the desired Channel name into the “Name” control. The “Channel” parameter defines
the Channel number of a specific port on the MCC Digital IO Device which is to be used
for the Digital Output bit. The “Port” parameter defines the Port on the MCC Digital IO
Device. Refer to MCC documentation for information on the naming of the ports. The
Invert parameter can be used to invert the logic level of the MICAS-X Channel relative to
the logic level actually read by the MCC hardware.

 The red delete and green insert buttons to the right of the window can be used
to delete and create new channels, respectively.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1.

 The MCCDaqDI Driver works in only in MICAS-X for Windows and is not
supported in MICAS-X-RT.

7.6.12 MCCDaqDO.vit

 The MCCDaqDO (Measurement Computing Data Acquisition Digital Output) is
used to create digital output channels using Measurement Computing Daq hardware.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 92

The “Device” parameter must match the name of the MCC Daq Device as it appears in
the Instacal program.

 To create a new digital output Channel used within the MICAS-X program, type
the desired Channel name into the “Name” control. The “Channel” parameter defines
the Channel or bit number on the MCC Digital IO Device which is used for the Digital
Output channel. The “Port” parameter defines the Port number on the MCC Digital IO
Device to which the bit belongs. Refer to MCC documentation for more information on
the name conventions of the ports.

The “Initial Value” parameter defines which initial value that the digital output
will be set to when the MICAS-X program starts. The Invert parameter can be used to
invert the logic level of the MCC Digital Output bit relative to the MICAS-X Channel.

 The red delete and green insert buttons to the right of the window can be used
to delete and create new channels, respectively.

 This Driver supports the Disabled on Startup?, Include Time?, Include State?, and

Initial Mode parameters, which are discussed in section 7.5.1.

 The MCCDaqDO Driver works in only in MICAS-X for Windows and is not
supported in MICAS-X-RT.

7.6.13 MCCDaqTC.vit

 The MCCDaqTC (Measurement Computing Data Acquisition Thermocouple)
Driver acquires temperatature data from Measurement Computing thermocouple
devices. This Driver is a .vit, so it can be instantiated multiple times within a MICAS-X
configuration. One instance of this Driver is needed for each MCC Device to be used.
Any one MCC Device can only have one MCCDaqTC Driver associated with it.

 To configure a device, enter the device name in the box in the upper-left-hand
part of the window labeled “Device”. This parameter must match the name of the MCC
Daq Device as it appears in the MCC Instacal program. The Instacal program must also be
used to configure the type of thermocouple being used with each channel of the device.

 To name a given channel, type the desired label into the appropriate “Name”
control, inside of the array. To the right of the “Name” parameter, select the Units to use
with the channel.

 The Channel parameter specifies the channel number on the MCC Daq Device
that will be used for the MICAS-X Channel. Channels are numbered beginning with 0.
Hence if the device support 8 Channels, they will be numbered 0 to 7.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 93

 The MCCDaqTC Driver works in only in MICAS-X for Windows and is not
supported in MICAS-X-RT.

7.6.14 MICAS-X-RT.vit

 The MICAS-X-RT Driver provides an interface for MICAS-X on Windows to MICAS-
XRT on a Real-Time target. To configure this driver, enter the IP Address of the Real-Time
target in the RT IP Address parameter. The Config File parameter must contain the
configuration file that MICAS-XRT will run. Finally, the Sync Clock Every parameter can be
used to determine how often the clock on the Real Time target is synchronized to the
Windows computer clock whenever MICAS-X on Windows is running and is connected to
the Real Time target. Whenever the time is synchronized between the two systems, a
message is logged indicating the old and new RT times.

 MICAS-X-RT has several data channels and commands that help interface to
MICAS-XRT on a Real-Time platform. A channel named “MICAS-XRT Connected” is
created which indicates the status of the three network communication methods used
with the MICAS-X-RT Driver. A Network Stream connection from MICAS-X-RT to MICAS-
XRT on the Real-Time platform allows commands to be sent from the Windows program
to the RT program. If this stream is connected, a value of 1 is OR’ed into the value of this
channel. Another Network Stream is used to send messages from the RT platform to the
MICAS-X-RT Driver. If this stream is connected, a value of 2 is OR’ed into the value of this
channel. Finally, a Current Value Table (CVT) is used on both platforms to hold the
channel values. The CCC (CVT Client Communication) mechanism is used to transfer this
CVT from the Real-Time platform to the MICAS-X-RT Driver. If the CCC is connected, a
value of 4 is OR’ed into the value of this channel. Thus, when all three network
connections are operating correctly, this channel should have a value of 7.

 Two custom Commands are also supported by this Driver. The SaveConfig
Command tells the RT system to save the current configuration as the “Auto-Load.ini”
file, so that it will be used automatically whenever the RT system is booted. The
ClearConfig Command does the opposite. It deletes the “Auto-Load.ini” file on the RT
system so that MICAS-XRT will not automatically start running a configuration when the
RT system boots up.

 The MICAS-X-RT Driver works only in MICAS-X for Windows and is not supported
in MICAS-X-RT.

7.6.15 Modbus.vit

The Modbus Driver can be used to interface to a wide variety of instruments
which support the Modbus communication protocol. Both serial and Ethernet Modbus
are supported.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 94

Enter the IP address or DNS name of the Modbus instrument in the “Modbus
Server Name” parameter when using Ethernet Modbus. Also enter the Ethernet port
used in the “Port” parameter. For Modbus over Ethernet, the port is often 502. Set the
“Serial/Ethernet” parameter True (Ethernet) to enable Modbus over Ethernet.

With the Serial/Ethernet parameter False (Serial), you can communicate to
Modbus devices which use a serial interface. In this case, set the “Port” parameter to
the serial port connected to the Modbus instrument. Also set the “Baud Rate”, “Serial
Type”, and “Unit ID” parameters as appropriate for the instrument. (Refer to the
instrument manual for more information on the proper values of these parameters.)

 On the Input Channels tab, enter the channels that are to be read from the
Modbus instrument. These channels should correspond to Input Registers on the
Modbus Instrument. Enter a descriptive name for the Channel in the “Name”
parameter. Select the appropriate data type with the “Data Type” parameter. Enter the
address of the Modbus channel in the Address parameter. The “Offset” and “Linear”
parameters can be used to apply a linear scaling to the data so that the Channel in
MICAS-X has can have different units than the Channel in the Modbus instrument. If the
“Linear” parameter is 0, both the Offset and Linear parameters are ignored.

 Use the Delete and Insert buttons to delete or add Channels to the list of
Channels being edited.

 On the Output Channels tab, enter the channels that are to be sent to the
Modbus instrument. These channels should correspond to Holding Registers on the
Modbus Instrument. Enter a descriptive name for the Channel in the “Name”
parameter. Select the appropriate data type with the “Data Type” parameter. Enter the
address of the Modbus channel in the Address parameter. The “Offset” and “Linear”
parameters can be used to apply a linear scaling to the data so that the Channel in
MICAS-X has can have different units than the Channel in the Modbus instrument. If the
“Linear” parameter is 0, both the Offset and Linear parameters are ignored.

 If the “Read Back” parameter is checked, then the associated Channel will also be
read from the Modbus instrument on every acquisition cycle, as well as written to the
Modbus instrument whenever its value in MICAS-X changes. This is useful for Channels
that can be changed by either MICAS-X or by the Modbus instrument itself. By enabling
“Read Back”, the Channel in MICAS-X is kept in sync with the Channel in the Modbus
instrument regardless of which system changed the value of the Channel. If a Holding
Register channel is not ever changed by the Modbus instrument and is only ever written
to by MICAS-X, do not check the Read Back parameter, since doing so will only add
more communication overhead to your system.

 The Initial Value channel is used when the “Initial Mode” parameter is set to
“Use Configuration Initial Value”, or True. In that case, the Output Channels will be set

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 95

to the values specified by these parameters when the Driver is Started. Use 1 for True
and 0 for False for Boolean Output Channels.

 Use the Delete and Insert buttons to delete or add Channels to the list of
Channels being edited.

 Modbus documentation from National Instruments states: “Per Modbus
convention, a register address is always one less than the register name. This is similar
to the first element of an array being element 0. The Modbus LabVIEW Library requires
register addresses, not register names.” Dependingon the documentation that came
with your Modbus instrument, you may need to subtract 1 from the documented
address to communicate with it from MICAS-X. Also note that an older standard for
Modbus documentation prepended the address with a Modbus function code. Code 3
was for read-only addresses and Code 4 was for read/write addresses. Hence an
address of 31121 would indicate a request to read a read-only address at 1121, which
would be the register 1120.

 This Driver supports the Initial Mode, Disabled on Startup?, Include Time?, and

Include State? Parameters, which are discussed in section 7.5.1.

7.6.16 MyRIO Daq.vit

 The MyRIO Daq driver interfaces to the Daq signals on the myRIO platform.

 There are three types of channels in this driver: Analog Input, Analog Output and
Digital IO. In order to include a channel, first find the one with the correct description in
the correct tab then select the include check box. Give the channel a name in the Name
field. The analog channels all have 4 scaling coefficients. The analog output channels
also have an initial value parameter which defines the value they will be at start-up. The
digital IO channels have 3 options. The direction option defines if this is an input or
output channel. Initial values defines if the channel is initially low(false) or high(true).
The invert parameter will invert the signal going to or from the channel.

 This driver supports the Disabled on Startup?, Include Time?, Include State?, and
Initial Mode? Parameters that are defined in 5.5.1.

 The MyRIO Daq driver can only be used with MICAS-X-RT.

7.6.17 NIDaqBridge.vit

 The NIDaqBridge (National Instruments Data Acquisition Bridge Device) Driver is
used to acquire data from a sub-set of NI Daq devices which are specifically designed for
measuring bridge sensors, such as the NI-9237. These NI devices can measure a wide
range of quantities, such as Force, Pressure, and Torque, and can scale the
measurements by linear or polynomial equations or a lookup table. For the initial

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 96

release of NIDaqBridge, a subset of functionality is provided. This Driver measures force
bridge sensors, using a linear transformation for scaling. Future versions of this Driver
will add additional sensor types and scalings. Note that this Driver has only been tested
with the NI-9237, though it should work well with other NI bridge devices as well.

 In addition, this Driver is written to run in a 1000 ms acquisition loop, since it
returns a single, averaged value once a second. This limitation is partly due to how the
NI-9237 hardware works, since it has an internal clock that can only run at 31 discrete
frequencies, which are defined by 50,000/n where n = 1 to 31. For this Driver, the device
is configured to acquire 10,000 points at 10,000 Hz, which it then averages together to
arrive at a single value once a second. If needed, future versions of this Driver could
include additional acquisition frequencies and/or averaging, though constrained by the
timing available on the device.

 The “Device” parameter must match the name of the NI Daq Device as it appears
in MAX (Measurement of Automation Explorer).

 The “Channels’ array allows individual configuration of each of the channels of
the device. The “Name” field defines the name given to the associated Channel in
MICAS-X. “Channel #” defines which channel on the device is being configured. “Channel
#” starts at 0.

 “Minimum Force” and “Maximum Force” are used by the device along with the
scaling information to determine the voltage range which the channel is configured to
use. These values must be specified in the same units as the Physical Units in the scaling
parameters.

 To scale the measurement from measurement units to physical units, two pairs
of scaling numbers are used. The First and Second Electrical Values are associated with
the First and Second Physical Values, and a linear transformation is derived allowing any
electrical value to be converted into the proper physical value. Also set the Electrical
Units and Physical Units parameters to the appropriate values for your sensor.

 The Bridge Information parameters allow you to specify how your device
operates. The Bridge Configuration can be set to Full, Half, or Quarter Bridge. The
Voltage Excitation Value can be specified, as can whether the excitation voltage is
internal or is provided externally. (See the NI hardware manual for allowed values of
internal excitation voltage.) Finally, the Nominal Bridge Resistance in Ohms must be
specified.

 With the above parameters, each channel can be configured differently,
according to the sensor being attached. Refer to the sensor data sheet and the NI device
manual for details about how to configure each channel and sensor and how to properly
wire the sensor to the Daq device.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 97

 This Driver does not implement the Offset Null or Shunt Calibration functionality
that may be available on the NI device.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in 7.5.1 Common Driver Parameters.

 The NIDaqBridge Driver works in only in MICAS-X for Windows and is not
supported in MICAS-X-RT.

7.6.18 NIDaqCounter.vit

 The NIDaqCounter (National Instruments Data Acquisition Counter) Driver is
used to acquire data from the counter channels on a wide variety of NI Daq devices.

 Each counter channel used by this Driver is configured separately. A single
instance of this Driver can configure counters from more than one Daq device.

 Label each channel by clicking in the “Name” box and entering the desired name.
The “Physical Channel” parameter specifies the counter channel of an NI Daq Device.
This name must exactly match the name found in MAX (Measurement and Automation
Explorer). For convenience, the chart near the lower left shows the NI Daq Devices
currently visible to your computer. Physical channel names can be copied and pasted
from this chart to the configuration parameters.

 The “Edge” parameter specifies when the count will be triggered (either when
signal level is rising or falling). “Count Direction” specifies whether the counter will
count up or down from its initial value. Insert the initial value of the counter in the
“Initial Value” parameter. The units of measure (Hz, rpm or count) can be specified in the
“Units” parameter. To specify counter output type, select either elapsed (absolute) or
delta (relative) in the “Counter Type” parameter.

 To delete or insert more counters, click the respective red and green buttons on
the right-hand side of the window.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?,

parameters, which are discussed in section 7.5.1.

 The NIDaqCounter Driver works in only in MICAS-X for Windows and is not
supported in MICAS-X-RT.

7.6.19 NIDaqDA.vit

 The NIDaqDA (National Instruments Data Acquisition Digital to Analog) Driver is
used to set output voltages using the DA channels on NI Daq devices. The “Device”
parameter must match the name of the NI Daq Device as it appears in MAX
(Measurement of Automation Explorer) and it appears in the chart to the lower left. The
chart shows the NI Daq Devices currently visible to your computer and how many

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 98

channels are available for each Device. Device names can be copied and pasted from
this chart into the Device parameter.

 To create a new channel, type the desired label into the “Name” control. The
Slope and Offset parameters can be used to apply a linear scaling to the data being
passed to the output channel. Normally, set the Slope to 1 and the Offset to 0, and the
output voltage will be equal to the value of the channel in MICAS-X. However, the Slope
and Offset can be used to map engineering units of a MICAS-X channel into voltage. For
example, if the channel was named Flow (cc/s) and a setting of 20 cc/s required a setting
of 5 V, then a Slope of .25 and an Offset of 0 would map the channel’s value of 20 to a
voltage output of 5V.

 The “Initial Value” is the value, in engineering units, used as a SetPoint when the
program first starts. The “Channel” parameter specifies the number of the analog
output channel to be used for the MICAS-X channel. Note that the chart to the lower
left shows how many analog output channels are available for each device that is
detected.

 The “Range” parameter defines the output voltage range for an analog output
channel in the MICAS-X system. Note that not all NI A/D boards support all possible
output ranges available in the selection.

 The red delete and green insert buttons to the right of the window can be used
to delete and create new channels, respectively.

 This Driver supports the Disabled on Startup?, Include Time?, Include State?, and

Initial Mode parameters, which are discussed in section 7.5.1.

 The NIDaqDA Driver works in only in MICAS-X for Windows and is not supported
in MICAS-X-RT.

7.6.20 NIDaqDI.vit

 The NIDaqDI (National Instruments Data Acquisition Digital Input) is used to read
digital inputs as channels using NI Daq hardware. The “Device” parameter must match
the name of the NI Daq Device as it appears in MAX (Measurement of Automation
Explorer) and as it appears in the chart to the lower left of the window. The chart shows
the NI Daq Devices that are currently present on your computer and the number of
channels available on each one. A Device Name from that chart can be copied and
pasted into the Device parameter if desired.

 To create a new digital output Channel used within the MICAS-X program, type
the desired Channel name into the “Name” control. The “Channel” parameter defines
the Channel number of a specific port on the National Instruments Digital IO Device
which is to be used for the Digital Output bit. The “Port” parameter defines the Port

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 99

number on the National Instruments Digital IO Device. The chart to the lower left shows
how many Ports are available on each NI Daq Device found on your computer, and how
many bits (Channels) are available in each Port. The Invert parameter can be used to
invert the logic level of the MICAS-X Channel relative to the logic level actually read by
the National Instruments hardware.

 The red delete and green insert buttons to the right of the window can be used
to delete and create new channels, respectively.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1.

 The NIDaqDI Driver works in only in MICAS-X for Windows and is not supported
in MICAS-X-RT.

7.6.21 NIDaqDO.vit

 The NIDaqDO (National Instruments Data Acquisition Digital Output) is used to
create digital output channels using NI Daq hardware. The “Device” parameter must
match the name of the NI Daq Device as it appears in MAX (Measurement of
Automation Explorer) and as it appears in the chart to the lower left of the window. The
chart shows the NI Daq Devices currently found on your computer and the number of
channels available on each Device. A Device Name can be copied and pasted from the
chart to the Device parameter if desired.

 To create a new digital output Channel used within the MICAS-X program, type
the desired Channel name into the “Name” control. The “Channel” parameter defines
the Channel or bit number on the National Instruments Digital IO Device which is used
for the Digital Output channel. The “Port” parameter defines the Port number on the
National Instrument Digital IO Device to which the bit belongs. The “Initial Value”
parameter defines which initial value that the digital output will be set to when the
MICAS-X program starts. Note that the chart to the lower left shows how many bits
(channels) and how many Ports are available for each of the NI Daq Devices currently
found on your computer. The Invert parameter can be used to invert the logic level of
the MCC Digital Output bit relative to the MICAS-X Channel.

 The red delete and green insert buttons to the right of the window can be used
to delete and create new channels, respectively.

 This Driver supports the Disabled on Startup?, Include Time?, Include State?, and

Initial Mode parameters, which are discussed in section 7.5.1.

 The NIDaqDO Driver works in only in MICAS-X for Windows and is not supported
in MICAS-X-RT.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 100

7.6.22 NiDaqRTD.vit

 The NiDaqRTD (National Instruments Data Acquisition RTD) driver interfaces with
NI Daq devices that can read RTD temperature sensors.

 Each channel must have a channel name and unique channel number. The RTD
parameter supports Pt3750, Pt3851, Pt3911, Pt3916, Pt3920, Pt3928 and custom. The
0deg resistance parameter specifies the nominal resistance of the RTD, and the min
value and max value specify the range of temperature to be measured. Wiring
configuration can be 2, 3, or 4 wire. The excitation source can be internal, external or
none. The current excitation should be specified for External excitation.

 The red delete and green insert buttons to the right of the window can be used
to delete and create new channels, respectively.

 This Driver supports the Disabled on Startup?, Include Time?, Include State?, and

Initial Mode parameters, which are discussed in section 7.5.1.

7.6.23 NIMotion.vit

 The NIMotion (National Instruments Motion) Driver allows the user to create one
or more axis configurations compatible with the NI motion hardware. The “Axis Name”
parameter allows the user to create a label for the axis. ‘Board ID’ lists the board
identification number for the NI Motion board in use. This parameter must be consistent
with the board’s configuration in MAX (Measurement and Automation Explorer). “Axis”
lists the hardware axis number.

 “Position Mode” sets the absolute or relative positioning mode for the axis.
“Loop Mode” sets the Open or Closed-loop mode for the axis. ‘Primary Feedback’
associates the proper feedback resource for the axis.

 “Unit Type” defines the type of information, Counts, or Steps that will be used
when referring to axis motion. “Counts(Steps)/EngUnit” is a conversion scaling
parameter which defines how many counts or steps equals one engineering unit. By
scaling the motion with this parameter, MICAS-X can give commands in terms of mm or
inches, for example, rather than steps or counts. “Accel/Decel (100000)” describes the
acceleration and deceleration value in Engineering units per second squared. “Velocity
(10000)” describes the velocity value in Engineering units per second.

 The red delete and green insert buttons to the right of the window can be used
to delete and create new axis configurations, respectively.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1

 The NIMotion Driver works in only in MICAS-X for Windows and is not supported
in MICAS-X-RT.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 101

7.6.24 Obis.vit

 The Obis Driver interfaces with the Obis lasers from Coherent. The “COM Port”
parameter defines which serial port will be used by the interface. The available com
ports can be found with the Check for Serial button or the Windows device manager. The
“Initial Setpoint” parameter can be configured if Initial Mode? Is set to “Use
configuration Initial Value”.

 The Obis Driver also includes the commands “ObisStartLaser” and
“ObisStopLaser”. These commands start and stop the laser corresponding with the
driver.

 This Driver supports the Initial Mode? Disabled on Startup?, Include Time?,
Include State?, and Record Data Stream? Parameters, which are discussed in section

7.5.1.

7.6.25 Omega.vit

 The Omega Driver can be used to read a temperature measurement and set a
temperature setpoint on an Omega Cni16 temperature controller. In addition, though
not yet tested, this Driver is likely compatible with a wide range of Omega devices. At
the very least, it can be altered to accommodate a wider range of Omega devices as well
as a wider range of functionality within these devices.

 Use the “COM Port” control to select the serial port used to communicate with
the Omega device. Use the “Baud Rate” parameter to set the baud rate for the driver to
be the same as the baud rate selected on the Omega controller. All other
communication parameters are assumed to be the default values that the Cni16 comes
preset to. In addition, the Omega Driver assumes that the Cni16 is configured to use the
standard ASCII protocol, not ModBus.

 Set the “Initial SetPoint” parameter to the value that the Omega temperature
SetPoint should be set to when MICAS-X starts running. This parameter is only used
when the “Initial Mode” parameter is set to “Use Configuration Initial Value”.

 This Driver supports the Disabled on Startup?, Include Time?, Include State?,
Record Data Stream?, and Initial Mode parameters, which are discussed in section

7.5.1.

7.6.26 Picarro G2401.vit

 The Picarro G2401 Driver acquires streaming data from a Picarro G2401 Cavity
Ring Down Spectrometer. This driver was created since PicarrO was observed to send
corrupt strings, making it difficult to use MOSDS without frequent errors. This driver
identifies the errors and ignores them, reporting new data only when the string is valid.
If this Driver is used in a system with many channels, it may be helpful to add a prefix like

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 102

“Picarro” to more easily identify channels. The COM port parameter defines which port
the device is connected to.

 This driver has the “G24010FileOff” and “ G24010FileOn” commands which turn
on and off OSDS streaming file recording respectively.

 This Driver supports the Disabled on Startup?, Include Time?, Include State? and
Record Data Stream? parameters, as well as the “Check for Serial Ports” control, which

are discussed in section 7.5.1.

 This driver should be in its own hardware-timed acquisition loop, with a 500ms
cycle time.

7.6.27 PID.vit

 The PID Driver is used to create PID control loops using an existing input channel
as the process variable and an existing output channel as the control variable. Note that

the Controllers Driver (7.6.6) can also create PID loops as well as other control loops.
The PID Driver has additional advanced features that give the PID loops more flexibility,
including multiple gains, gains that can be changed while the program is running, and an
auto-tuning wizard.

 Use the PID Loops list to select a specific PID loop to edit. The Insert and Delete
buttons to its right allow the addition or removal of PID loops from this list.

 Once a specific PID loop is highlighted in the list, one can edit the parameter for
that PID loop. The SetPoint Channel is used to name the setpoint channel for the
Controller. The Output Channel is the controller (output) Channel that this Controller
sets. The Process Variable Channel parameter specifies the Channel that is used to
compare to the SetPoint Channel to determine how the Controller should react. The
Initial SP parameter determines the value of the SetPoint Channel when MICAS-X starts.

 With the PID Driver, multiple gains can be defined for a single PID loop. At least
one set of gains should be defined for each loop. When the program is running, the gain
set to be used is selected with the Mode channel. A value of -1 will disable the PID loop,
so that the PID Driver does not write to the Output Channel at all. A value of 0 places the
loop in Manual Mode. A value of 1 or greater selects a Gain set to use for PID Mode.

 For any one gain set, the Kc, Ti(min) and Td(min) parameters specify the
Proportional Gain, Integral Gain (in units of Kc * minutes) and the Derivative Gain (in
units of Kc / minutes). The Min Output and Max Output parameters impose limits on
how far the PID algorithm can set the Output Channel. These parameters keep the
control loop from running away when it saturates.

 The Slope and Offset parameters are used to scale the Output Channel in Manual
mode, and the inverse of this linear relationship is used to calculate a SetPoint when the
Controller switches from Control Loop to Manual mode. E.g. these parameters allow the

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 103

Output Channel and the SetPoint Channel in Manual mode to have different units. As an
example, assume that a pressure is being controlled by changing the value of a flow. The
SetPoint Channel (in Control Loop Mode) would have units of pressure. The Process
Variable Channel would have units of Flow. But assuming the flow controller required a
voltage input, the Output Channel would have units of Volts. In Manual mode, the Slope
and Offset would be used to calculate the appropriate Voltage for a Manual SetPoint in
units of Flow. When the loop is changed from Control Loop mode to Manual mode, the
inverse relationship would be used to calculate the Setpoint in Flow based on the
current value of the Output Channel in Volts.

 The final parameter is Start-up, which has the options Disabled (-1), Manual (0)
and Gain (1, 2, 3…). When set to one of the gain selections, the loop operates using the
full PID logic, using the gain set selected. When set to Manual, the SetPoint Channel
directly controls the Output Channel. When switching between Manual and Control
Loop, the program automatically converts the SetPoint Channel’s value in such a way as
to hold the loop at the current value. E.g. when switching from Control Loop to Manual,
the current value of the Output Channel, scaled by the Slope and Offset, is automatically
written to the SetPoint Channel. When switching from Manual to Control Loop, the
current value of the Process Variable Channel is automatically written to the SetPoint
Channel. When in Disabled Mode, the PID Driver does not write to the Output Channel
at all. This mode allows for multiple control loops to be defined using the same Output
Channel, as long as only one of the loops is enabled.

 To change the Mode for a PID Controller, two options are available. If the PID
Controller is configured to appear on the Control tab of MICAS-X, a Mode switch will
automatically be placed to its right. A second way to change the mode is use the Set
Command to set the MICAX-X Channel that has the same name as the SetPoint Channel,
but with the word “Mode” preceding it.

 The PID Driver also supports the AutoTune command. When this command is
used, with a PID Setpoint channel as the argument, an autotuning wizard appears. From
this wizard, one can select various autotuning parameters, start the autotuning process,
and then choose whether or not to keep the resulting gains. Note that even if the gains
are retained and used in the program from that time forward, you still need to write
those gains into the configuration file for them to be used when the program is
restarted.

 This Driver supports the Intial Mode, Disabled on Startup?, Include Time?, and

Include State? Parameters, which are discussed in section 7.5.1.

 The PID Driver works in both MICAS-X for Windows and MICAS-X-RT.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 104

7.6.28 Prime Scales.vit

 The PrimeScales Driver reads the weight from a PS-IN202 industrial scale made
by Prime Scales, via a serial port. The “COM Port” parameter defines which serial port
will be used by the scale. The “Tare Weight” parameter is used whenever the scale
sends gross weight, as the Driver will then subtract the Tare Weight parameter to return
net weight.

 This Driver supports the Disabled on Startup?, Include Time?, Include State?, and

Record Data Stream? Parameters, which are discussed in section 7.5.1.

7.6.29 PWM

 The PWM (Pulse Width Modulation) Driver is used to link a calculated Duty Cycle
channel to a digital output channel, so that the power to a control point can be
modulated to achieve stable control. The typical situation in which this Driver would be
used is to have a Duty Cycle channel calculated by a PID loop, and then use the PWM
Driver to cycle a digital output channel (such as on from a NIDaqDO Driver) to achieve
the calculated duty cycle. This could be used to stabilize a temperature setpoint, among
other things.

 The PWM Driver allows one to create any number of PWM “sets”, or definitions.
Each set has seven parameters. The Duty Cycle Channel defines which channel is the
input for the PWM set. The selected channel can have any range or scaling, though 0 to
100% is typically most convenient. This channel is often the output channel from a PID
loop, but could come from other sources instead.

 The PWM Output Channel parameter defines the channel that should be
switched on and off at the specified duty cycle. Typically, this channel would be a digital
output channel, but it could be another type of output channel as well, if controlling a
system can be achieved by setting that channel to two different values.

 The Cycle Time (s) parameter defines the total time, in seconds for 100% duty
cycle for the PWM set. Note that the PWM Driver uses software timing, which is only
accurate to 10’s of ms, so cycle times of several seconds or more are most appropriate.
Cycle times of less than one second may work in some cases, though the exact PWM
pulse widths created for such short times will not be as accurate (relatively speaking) as
for longer times.

 The Duty Cycle Range parameter defines the scaling of the Duty Cycle Channel. If
the Duty Cycle Channel is inherently in percent, then the Range parameter should be set
to 100. If the Duty Cycle Channel is scaled to unity, so that it only varies from 0 to 1, then
the Range parameter should be set to 1. Other ranges may be used as appropriate for
the choice of Duty Cycle Channel. Note, however, that the Duty Cycle Channel is

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 105

assumed to range from 0 to some positive value. This Driver does not allow arbitrary
scaling of Duty Cycle Channels that start at a value other than 0.

 The Dead Band (%) parameter is used to prevent very small or very large Duty
Cycles from causing frequent switching of the output channel. This parameter is always
specified in percent, regardless of the Duty Cycle Range. It can be set to 0 to be ignored.
As an example of a non-zero value, assume that the Cycle Time is set to 10 seconds, the
Dead Band is set to 2%, and the Duty Cycle Range is set to 100 (e.g. the Duty Cycle
Channel is already scaled to percent.) In this case, a duty cycle less than 2 will result in
the output channel to be left in the Off state for the entire cycle, rather than cycling on
for just 0.2 seconds. Similarly, a duty cycle of greater than 98 would result in the output
channel be left in the On state for the entire cycle. This type of setting can save
unnecessary wear on relays or similar components that occur for very short pulses,
without significantly impacting the performance of the control loop.

 The Off Value and On Value parameters define what numeric values the PWM
Output Channel is set to during the Off and On portions of the cycle. Normally, these are
set to 0 and 1, respectively. The logic of the PWM control can be inverted by setting
these to 1 and 0 instead.

 Each PWM Set will spawn an independent timing loop within MICAS-X, which will
turn the PWM Output Channel on and off at the appropriate times. Note, however, that
these loops must communicate to the output channel via the Command Loop and the
Driver for the output channel, so some latency is to be expected. The more complex
(and CPU intensive) that the MICAS-X configuration is, the higher the latency may
become.

 Use the Delete and Insert buttons to the right of the PWM Sets parameters to
remove or add new PWM sets.

 This Driver supports the Disabled on Startup? and Include Time parameters,

which are discussed in section 7.5.1.

7.6.30 RIO Scan Engine

 The Rio Scan Engine Driver provides a quick way to acquire data on MICAS-X-RT
for most channels that are supported by the Scan Engine.

 The Notes parameter allows one to add documentation describing how the
Driver has been configured.

 On the Input Channels tab, enter the information for each Scan Engine input
channel that the Driver should support. The Name parameter is used to specify the
name of the channel within MICAS-X-RT. The four Scaling Coefficients allow one to apply
a polynomial up to third order to the measured value to scale it into engineering units.
The Channel Type parameter defines whether the channel is an analog channel (False) or

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 106

a digital channel (True). Finally, the IO Address parameter must contain the Scan Engine
Variable address for the channel. The IO Address has the form
“ni.var.io://RTTargetName/Mod1/AI0”. Note that “RTTargetName can be either the
name or the IP address of the target.

 The configuration of the Controller (Output) Channels is similar to the Input
Channels, with the addition of the Initial Value parameter. This parameter defines the
value that the channel will be set to when Acquisition starts if the “Initial Mode”
parameter is set to True, Use Configuration Initial Value.

 Use the Delete buttons to remove a channel from the list of channels. Use the
Insert button to add a channel before the channel next to the insert button being
pressed.

 Since adding all or most of the Scan Engine channels by hand can be tedious, two
methods are provided that may help discover the available Scan Engine channels for a
system. Both methods are available on both the Input Channels and Output Channels
tabs.

 The Find Channels from Project button attempts to populate the channels array
based on information stored in the LabVIEW project. Because it requires the project, this
button will not function properly in an executable version of MICAS-X. When pressed,
the program will parse the project and attempt to find all the input channels that are
currently configured for the Scan Engine. It will also attempt to set the Channel Type
appropriately for each channel by looking at the names given to each channel in the
project. If custom channel names have been entered in the project, this function will not
be able to properly select the Channel Type. After using this button to populate the
Channels array, one should carefully review all the channels and make corrections to all
the parameters as necessary. Also note that this function has been tested on a limited
number of projects and targets and may not work in all situations.

 The Find Channels from Target button populates the channels array with
available Scan Engine channels by querying the Scan Engine itself. It is therefore
necessary to supply the IP Address of the target and ensure that the target is connected,
running, and is in Scan Engine mode for this function to work. For Input Channels, there
are additional options which can be checked if you wish to have the target return other
input channels related to the target performance. Many targets have channels related to
the Chassis, the Controller, and the CPU which can be found this way.

 Additional tips and restrictions for using the Find Channels buttons are shown in
the text boxes near the buttons. In addition, if an error occurs when using these
functions, an error indicator is shown.

 This Driver supports the Disabled on Startup?, Include Time?, Include State?, and

Initial Mode parameters, which are discussed in section 7.5.1.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 107

 The RIO Scan Engine Driver works in only in MICAS-X-RT and is not supported in
MICAS-X for Windows.

7.6.31 System

 The System Driver allows one to include a wide variety of channels that are used
to log the performance of the MICAS-X software and the computer on which it is
running. Many of the channels provided by this Driver use the .NET interface. Thus .NET
must be correctly installed on the target computer for this Driver to function properly.
When MICAS-X is run inside LabVIEW, this is usually not an issue, since the LabVIEW
installation ensures that .NET is installed. If MICAS-X is used as a compiled .exe program,
it may be necessary to install the .NET framework before this Driver functions properly.

 Use the Drives parameters to define any hard drives for which you wish to
monitor the disk free space. Use the Delete buttons to the right to remove a Drive from
this list.

 The Channels to Include parameters allow one to select which of numerous
additional predefined channels to include. These channels include:

⚫ Sec Since Jan 1 – A time stamp formatted as seconds since midnight, January 1 of
the current year, thus including month, day, and time in a single number.

⚫ AC Power – This channel has a value of 1 if the computer is on AC power, a 0 if it
is on battery power. This channel should work for laptops as well as systems with
a properly-installed UPS.

⚫ Battery Flag – This channel should work for laptops and systems with a properly-
installed UPS. It returns the following codes for battery condition: 1 High, 2 Low,
4 Critical, 8 Charging, 128 No battery. These codes can be combined as needed.
E.g. a code of 12 indicates a critical battery level and that the battery is charging.

⚫ Battery Time Remaining (s) – This channel returns the estimated time in seconds
that the computer will continue operating on battery power. This channel should
work for laptops and systems with a properly-installed UPS.

⚫ CPU Usage (%) – This channel returns the CPU Usage averaged over all cores.

⚫ RAM Usage (GB) – This channel returns the RAM used in GB.

⚫ Secured – This channel returns a 0 if the MICAS-X password is not currently
enforced, a 1 when the password is in force.

⚫ Acquire – This Channel has a value of 0 if the program is not acquiring data, 1 if it
is.

⚫ Record – This Channel has a value of 0 if the program is not recording data, 1 if it
is.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 108

⚫ Debug – This Channel has a value of 0 if the program is not in Debug mode, 1 if it
is.

⚫ Last Acq Time – This channel is a time-stamp in seconds since Jan 1, 1904,
indicating when the main acquisition loop (loop 0) last acquired data.

⚫ # of Alarms – This channel indicates how many Alarms are currently in the Alarm
state.

 The Performance Channels allow one to add any of the .NET computer
performance monitoring points to MICAS-X. To add a performance channel, select the
proper Category, then the Instance, and if available, the Counter. Create a descriptive,
unique Name for this channel, and the Add Channel button will become not-greyed-out,
allowing you to press this button to add the defined channel to the list of Performance
Channels. Use the Delete buttons to the right to remove a Performance Channel that is
no longer desired.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1.

 The System Driver works in only in MICAS-X for Windows and is not supported in
MICAS-X-RT. The System-XRT Driver provides similar support for MICAS-X-RT.

7.6.32 System-XRT

 The System-XRT Driver allows one to include a wide variety of channels that are
used to log the performance of the MICAS-XRT software and the real-time computer on
which it is running. The Channels to Include parameters allow one to select which of
numerous predefined channels to include. These channels include:

⚫ Sec Since Jan 1 – A time stamp formatted as seconds since midnight, January 1 of
the current year, thus including month, day, and time in a single number.

⚫ CPU Usage (%) – This channel returns the CPU Usage averaged over all cores.

⚫ Largest Avail Mem (kB) – This channel works on Pharlap and VXWorks RT
platforms, but not on Linux. It returns the largest available memory segment in
kB. An Alarm or Trigger on this channel could be used to reboot the system if the
available memory becomes too low.

⚫ Free Physical Mem (kB) – This channel works on Linux RT platforms, but not on
Pharlap or VXWorks. It returns the largest available section of free RAM memory.
An Alarm or Trigger on this channel could be used to reboot the system if the
available memory becomes too low.

⚫ Acquire – This Channel has a value of 0 if the program is not acquiring data, 1 if it
is.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 109

⚫ Record – This Channel has a value of 0 if the program is not recording data, 1 if it
is.

⚫ Last Acq Time – This channel is a time-stamp in seconds since Jan 1, 1904,
indicating when the main acquisition loop (loop 0) last acquired data.

⚫ # of Alarms – This channel indicates how many Alarms are currently in the Alarm
state.

⚫ Connected-XRT – This channel is a bitwise representation of the connection
status of MICAS-X-RT to a copy of MICAS-X on Windows that is running the
MICAS-XRT Driver. Note that the MICAS-XRT Driver only connects to the MICAS-
X-RT with the Windows MICAS-X program is acquiring data. This Channel as a bit
value of 1 if the Command stream from Windows to RT is connected. A bit value
of 2 means that the Message stream from RT to Windows is connected. Finally, a
bit value of 4 means that the CCC connection for sending channel values from RT
to Windows is working. Thus a value of 7 means that all three connections are
good. Note that this channel is very similar to the Connected channel in the
MICAS-XRT Driver, but the two channels operate on different sides of the
connection. Also note that on the RT platform, there is no direct way for the
program to tell if the CCC connection is valid or not. Thus the bit value of 4 is
deduced based on a Watchdog channel. The MICAS-XRT Driver continuously
updates the Watchdog channel whenever it is in Acquire mode. MICAS-X-RT on
the RT platform monitors the Watchdog channel every 2.5 seconds. If a new
value is not detected within that time, then the bit value of 4 is not set. Note that
this mechanism works as intended whenever the MICAS-XRT Driver is in an
acquisition loop that runs once every 2 seconds or faster. If it is in a slower loop,
the bit value of 4 will never be set. In that case, the other two network
connections (bit values 1 and 2) must be used to indicate that a connection has
been made.

 Use the Drives parameters to define any hard drives for which you wish to
monitor the disk free space. Use the Delete buttons to the right to remove a Drive
from this list.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1.

 The System-XRT Driver works in only in MICAS-X-RT for real-time platforms, and
not in MICAS-X for Windows. The System Driver provides similar support for MICAS-X on
Windows.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 110

7.6.33 UPS

The UPS Driver is used to communicate with various brands of Uninterruptible
Power Supplies to monitor the AC power state and the battery state. When a UPS is
used with a MICAS-X system, this Driver can be used to safely shut down the program
when a power outage occurs. (Depending on whether or not the instrumentation is also
on a UPS, the safe shutdown could also set the hardware into a safe state.)

With its current release, this Driver is compatible with two models of UPS,
though other models could easily be added in the future. When the “UPS Model”
parameter is set to “Intellipower FA00339”, the Driver uses the Intellipower
communication API. Although this Driver has only been tested with the FA00339 model
of Intellipower UPS, it will likely work with other Intellipower UPS’s as well. When
“CyberPower CP1500AVRLCD” is selected, the Driver monitors the CTS and DCD
handshaking lines of the serial port to determine the AC power and battery states. This
protocol is likely used on other CyberPower UPS’s in addition to the 1500AVRLCD, and is
also quite likely used by other brands of UPS’s as well.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1.

7.6.34 Vaisala HI70

 The Vaisala HI70 Driver reads three channels of data over a serial port from the
Vaisala HI70 humidity and temperature sensor. The “COM Port” parameter defines
which serial port is used for communication. It is assumed that the baud rate of the
HI70 will be set to the default value of 19200. In addition, this Driver configures the HI70
to send data automatically at 1 Hz. Thus this Driver should be assigned to a device-timed
loop with a time of 1000 ms.

 This Driver supports the Disabled on Startup?, Include Time?, Include State?, and

Record Data Stream? Parameters, which are discussed in section 7.5.1.

7.6.35 Vaisala HMT310

 The Vaisala HMT310 Driver reads 11 channels of data over a serial port from the
Vaisala HMT310 high precision humidity and temperature sensor. The “COM Port”
parameter defines which serial port is used for communication. The “Baud Rate”
parameter must be set to match the baud rate for which the HMT310 is configured. The
Channels parameters allow one to select which of the eleven available channels is
returned to MICAS-X.

 This Driver supports the Disabled on Startup?, Include Time?, and Include State?

Parameters, which are discussed in section 7.5.1.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 111

7.6.36 Watlow.vit

 The Watlow Driver can be used to read a temperature measurement and set a
temperature setpoint on a Watlow EZZone temperature controller.

 Use the “COM Port” control to select the serial port used to communicate with
the Watlow device. Use the “Baud Rate” parameter to set the baud used for
communication. All other communication parameters are assumed to be the default
values that the EZZone controllers come preset to. In addition, the Watlow Driver
assumes that the EZZone is configured to use the standard ASCII protocol, not ModBus.

 Set the “Initial SetPoint” to the value that the Watlow temperature setpoint
should be set to when MICAS-X starts running. This parameter is used if the “Initial
Mode” is set to “Use Configuration Initial Value”.

 This Driver supports the Disabled on Startup?, Include Time?, Include State?,
Record Data Stream?, and Initial Mode parameters, which are discussed in section

7.5.1.

7.6.37 Web Power Switch.vit

 The Web Power Swith Driver is used to control a Web Power Switch 7 internet-
enabled power strip. This device has eight outlets which MICAS-X can turn on and off.
The IP Address must be set to the IP address which the Web Power Switch has been
configured to use. The User Name and Password parameters must contain the
username and password used with the Web Power Switch in its own web interface.
Note that these parameters are not encrypted within MICAS-X. The Initial Mode
parameter determines whether MICAS-X reads the current state of each outlet when
MICAS-X is started, and uses those states as the initial values of the channels, or if
MICAS-X sets the outlets to the Initial Value parameters defined in the configuration.
The Include Time? Parameter determines whether or not MICAS-X prepends the Web
Power Switch data with a timestamp.

 The Outlets array contains the definitions for each of the eight channels. The
channels must be entered in order. If a channel is unused, leave the Outlet Name blank.

The Initial Value determines if the outlet set On or Off when MICAS-X 111xecut, but only
if the Initial Mode is True (Use Configuration Initial Values).

 When the Enable Watchdog parameter is set to True, MICAS-X will run scripts on
the Web Power Switch 7 such that one or more outlets will be automatically turned off if

MICAS-X or the computer on which it is running should crash. See Appendix F: Web

Power Switch 7 Watchdog Function for information on configuring the Web Power
Switch 7 to accommodate this functionality. Note that when MICAS-X stops, the Web

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 112

Power Switch 7 stops the watchdog functionality, so the guarded outlet(s) will then
remain in their current states indefinitely.

 The MICAS-X channels for the Web Power Switch are Controller, or Output,
channels, since they are used to set the value of the outlet (On, 1 or Off, 0). However,
since the outlets can be switched manually on the Web Power Switch itself, MICAS-X can
also read the state of the outlets in during the Acquire command. (By comparison, most
MICAS-X Drivers which set Controller channels only return their memory of the last
values set when the Acquire command is used.) Because the outlets can be changed
both by software and manually, there is a possibility of a race condition, wherein the
value set by MICAS-X could be overwritten by a manually set value, or vice versa. To
prevent this type of race condition, the Web Power Switch Driver imposes a wait of
400ms after any outlet value is set. (Note that this 400ms delay is only imposed when
the Read Back parameter described below is set to True.)

 In addition to the delay imposed after setting an outlet value, the Web Power
Switch Driver interacts with the Web Power Switch via http calls, which can be rather
slow in certain situations. For both these reasons, it is advised that the Web Power
Switch Driver be assigned to its own Acquisition Loop in MICAS-X. It may also be
worthwhile to set the Acquisition Loop for this Driver to a slower rate, such as 5 or 10
seconds, in order to limit the Ethernet traffic resulting from the communications to this
device.

 The Read Back parameter allows one more option for controlling the timing and
functionality of the Web Power Switch. When set to True, Read Current Values from
Device, every acquisition loop will read the switch states from the hardware itself, as
described above. This read can take over one second, which is why it is recommended
that this Driver be placed in its own acquisition loop with a cycle time of 2 seconds or
more. When the Read Back parameter is False, however, the Web Power Switch Driver
reports the state of the outlets based only on its memory of how it last set them. This
option results in a very fast read, allowing the Web Power Switch Driver to be placed in a
faster Acquisition Loop, but can potentially allow MICAS-X data to become out of sync
with the states of the outlets if outlets are turned on or off manually at the device. To
prevent this possibility, one should use the Web Power Switch configuration web page
and lock out the hardware switches so that the outlets can only be changed by MICAS-X.

 This Driver supports the Disabled on Startup?, Include Time?, Include State?, and

Initial Mode parameters, which are discussed in section 7.5.1.

7.7 Instruments Available at Additional Cost

 To read how to use instruments, see the Instruments section of this manual

(9.6.8). In the Configuration Editor, first add the Instrument on the MICAS module
editor. Then, to edit the configuration of these instruments, select the ‘Instruments’ tab

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 113

in the ‘Components’ menu located on the upper-left-hand side of the window. Next,
select the appropriate instrument in the menu directly below ‘Components,’ now
labeled ‘Instruments.’ Currently, no Instruments are included with the MICAS-X base
package. Below are instructions on how to configure instruments that are available at
additional charge.

7.7.1 Broadcast.vit

 The Broadcast Instrument is a component of MICAS-X which allows the user to
send data from MICAS-X to other systems by several methods. The Broadcast
functionality allows MICAS-X to send a selected Channel list out a serial port or via UDP
over Ethernet. The Send Command function allows the “Send” Command in MICAS-X in
another instance of MICAS-X to send Commands that are then received by the Broadcast
Instrument and executed by the receiving instance of MICAS-X. The Data Dashboard
options allow data to be published to Shared Variables, which can be used by the Data
Dashboard application to create remote panels for interacting with MICAS-X. Since this
instrument is a .vit rather than a .vi, it can be instantiated multiple times within a MICAS-
X configuration.

 To Broadcast data, begin by selecting which channel list will be broadcast by
using the drop-down menu labeled “Channel List” on the Channel List Broadcasting tab.
(If no channel lists have been defined, the only list available will be the “All” list. Use the
Channel Lists module editor to create additional channel lists.)

 Define which strings will be prepended and added to the end of each line of data
by inserting the desired entries into the “Prefix” and “Suffix” parameters.

 The “Format” parameter should contain an appropriate format specifier, which
defines how the data will be written in the broadcast data stream. *%#g is
recommended (automatic formatting). See LabVIEW help for more information and
options on format specifiers.

 Select a delimiter (Comma, Space or Tab) using the ‘Delimiter’ parameter.

 Check the “Include ISO Timestamp” box if the user desires to add an ISO
timestamp to the output stream, after the prefix and before the first channel. The
format of this time string is YYYYMMDDThhmmss.sss. Note that the letter “T” separates
date and time, as per the ISO standard.

 The “Bus” parameter defines which type of bus will be used to broadcast data.
The options currently supported are Serial, UDP, and UDP Multicast.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 114

When the Serial Bus is selected, choose which serial port to use by entering the
desired number into the “Serial Port” parameter. The ‘Baud Rate’ parameter allows the
user to determine the Baud rate that a serial port device will use.

 When the UDP bus is selected, the user can set the “UDP Packet Size” parameter.
The default of 0 means that the traditional packet size of 548 will be used. Note that
non-default sizes may cause problems on some networks or OS’s. Use the “UDP Local
Port” parameter to define the local port used for UDP transmission.

 Either UDP Broadcast or UDP Unicast (one to all, or one to one) can be used
when “UDP” is selected as the bus. To use UDP Broadcast, leave the “UDP Multicast or
Unicast IP Address” blank, or set it to 255.255.255.255. To use UDP Unicast, set the
“UDP Multicast or Unicast IP Address to the IP address of the receiving computer.

 When “UDP Multicast” bus is selected, enter values for “UDP Target Port”, “Time-
to-Live” and “UDP Mutlicase or Unicast IP Address” as well as “UDP Packet Size” and
“UDP Local Port”. The “UDP Target Port” parameter determines the remote or target
port to which UDP writes the broadcast data. The ”Time-to-Live” (TTL) parameter
specifies the number of routers, minus 1, to forward a packet. The TTL value applies to
all packets sent using this socket. Finally, the “UDP MC IP Address” control specifies the
IP address that the UDP MultiCast stream will be sent to. If this control is left as default
and empty, the address 234.5.6.7 will be used.

 The “Cycle Time?” and “Cycle Time (ms)” parameters are used to determine
when the Broadcast Instrument sends its data. If “Cycle Time?” Is False (Sync to Acq
Loop 0), then the Broadcast Instrument sends data every time the default Acquisition
Loop (Loop 0) gets new data. If “Cycle Time?” is True (Use Cycle Time), then the “Cycle
Time (ms)” parameter’s value is used to determine how often data is Broadcast. Note
that if “Cycle Time (ms)” is 0, a value of 1000 ms is used instead.

 The “Send” Command in MICAS-X allows one to send arbitrary strings over UDP
or a serial port to another system. If the receiving system is another instance of MICAS-
X, and the strings are formatted as proper MICAS-X Commands, this allows one instance
of MICAS-X to directly control another. For this to work, the Broadcast Instrument must
be configured on the sending computer to define how the data is sent. On the Send
Command Connection tab, use the Bus to select UDP, UDP Multicast, or Serial as the
desired bus. Select None to disable this feature.

When the Serial Bus is selected, choose which serial port to use by entering the
desired number into the “Serial Port” parameter. The ‘Baud Rate’ parameter allows the
user to determine the Baud rate that a serial port device will use.

 When using UDP or UDP Multicast, set the UDP parameters as described above
for the Broadcast tab.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 115

 The “Send Prefix” parameter defines a string of text that will be prepended to
every Command or string sent with the “Send” Command. This prefix is necessary, for
example, with the NCAR RIC system, for which the prefix is usually the instrument name
followed by a comma. Note that the comma must be included explicitly in this
parameter. If a Send Prefix is used and the Send Command is being used to send MICAS-
X Commands to an instance of the “Command” Instrument, then the Command
Instrument must also be configured to know about that prefix so that it is removed from
the Send string before the Command is processed.

 The Broadcast Instrument can also configure how MICAS-X can communicate
with a set of predefined Shared Variables. Other LabVIEW programs could be written
which read and write to these Shared Variables, or they can be used with the Data
Dashboard app for Android and iOS devices. The Data Dashboard is an easy, intuitive
way to create graphical user interfaces for displaying and controlling data.

 To configure the Shared Variables for the Data Dashboard, simply click on each of
the Channel selection menus and choose the channel to assign to each variable. Up to
twenty real Shared Variables and ten Boolean Shared Variables can be used. The Shared
Variable names, which will be needed when you configure the Data Dashboard, are
shown to the right of the Channels list. For each active Channel, there will be one
Shared Variable with the name “Channel n Name” which is a string and will contain the
selected Channel name, and another Shared Variable with the name “Channel n Value”
which is a double precision real or a Boolean and will contain the updated value of the
Channel.

 The Data Dashboard Shared Variables functionality also allows communication
from the Data Dashboard back to MICAS-X through the use of up to five predefined sets
of Command Shared Variables. These are configured on the Data Dashboard Commands
tab. These Commands appear on the Data Dashboard as buttons. When pressed, the
associated Shared Variable transmits the command request to the Broadcast Instrument
in MICAS-X, which then uses the configuration information to create the desired
Command. To configure such a command, select the desired Command action using the
“Command” drop down menu. Then select the command’s arguments using the Target
parameter and the Value parameter. E.g. for the first line, Command 1, if the Set
Command is selected, and the Target is the Channel “Temp Setpoint”, and the Value is
“25”, then every time the Command 1 button is pressed on the Data Dashboard, the
Command “Set:Temp Setpoint:25” will be issued in MICAS-X. Alternatively, the “SV
Value?” parameter can be changed from “Local Value” (False) to “SV Value” (True). In
this case, the value used with this Command will be taken from a Shared Variable with
the name “Command 1 Value”. Similarly to the previous example, the Data Dashboard
for this case would configure a button to be linked to the “Command 1” Shared Variable,
and a numeric control to be linked to the “Command 1 Value” Shared Variable. Then
when the button is pressed on the data Dashboard, the MICAS-X Command “Set:Temp

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 116

Setpoint:xx” will be executed, where xx is the value of the Command 1 Value Shared
Variable which will be obtained from the numeric control on the Data Dashboard.

Since the Data Dashboard functionality utilizes a single set of predefined Shared
Variables that are contained in a LabVIEW library in the MICAS-X project, only one
instance of the Broadcast Instrument should be configured to use the Shared Variables.

The Broadcast Instrument is only available in MICAS-X for Windows, not MICAS-

X-RT.

7.7.2 Command.vit

 The Command Instrument provides an interface for receiving commands in
MICAS-X from another instrument or software package. The Command Interface Utility
is one example of a program that can send commands to MICAS-X via the Command
Instrument. Since this instrument is a .vit rather than a .vi, it can be instantiated more
than once in a single MICAS-X configuration.

 Begin configuring the Command Instrument by selecting which bus will be used
for receiving commands (Serial or UDP) by selecting an option in the “Bus” parameter.

 If Serial is selected, enter the serial port number in the “Serial Port” parameter to
define which port is used to receive commands. Next, select the “Baud Rate” parameter
and insert the desired Baud rate that a serial port device will use.

 If UDP is selected, define the port that will be used to listen to commands by
entering the desired number into “UDP Local Port”. For either option, choose whether or
not to log all individual commands by toggling the “Log each Command received/Don’t
Log each Command” switch to the right of the other parameters.

 The “Command Prefix” parameter defines a string of text that is prepended to
every Command that is being sent to the Command Instrument. This prefix is necessary,
for example, with the NCAR RIC system, for which the prefix is usually the instrument
name followed by a comma. Note that the comma must be included explicitly in this
parameter. If the Send Command is being used to send MICAS-X Commands to this
instance of the “Command” Instrument, then the Broadcast Instrument on the sending
computer must also be configured to know about that prefix so that it is prepended
properly to each Send string before being transmitted. If the Command Interface is being
used to send Commands to this instance of the Command Instrument, then it will know
about this prefix because it will read the configuration file containing the Command
Instrument parameters.

 The Command Instrument is only available in MICAS-X for Windows, not MICAS-
X-RT.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 117

7.7.3 Email.vi

 The Email Instrument allows one to configure Alerts that are sent automatically
to one or more email addresses. In addition, it can be used to manually send short
emails to the same list of recipients. (This second use case is typically for testing
purposes.) Note that this Instrument has been tested to work with some email servers.
However, the options for authentication that this modules supports are limited, and it
may be the case that your email server will not work correctly with this Instrument.

 Configure the Email Instrument by entering the information required to connect
to an email server. This includes the Sender’s Email Address, the Outgoing Email Server
name, the Port (often 587), and authentication information, including Username,
Password, and whether or not to use TLS authentication. Note that if the Hide Password
control is True, the password will not be displayed directly on the configuration page.

 When the Python version is selected, one must also enter the absolute path on
the computer in use to the python program. This version also requires that a third-party
installation of Python be present on the computer in use. The version 3.6.8 Python x86-
64 executable installer, found at https://www.python.org/downloads/windows/ has
been tested with MICAS-X. If the above link does not work, contact Original Code
Consulting for an archived copy of this version. When this version of Python is installed,
the path is usually
C:\Users\YourUsername\AppData\Local\Programs\Python\Python36. Also note that
when the Python option is used, MICAS must be able to find the Python script named
“sendmailssl.py” in the MICAS-X Resources folder. This file is normally distributed with
every copy of MICAS-X. The python version of e-mail will not work with any windows
operating system using XP or earlier.

 In the Subject field, enter text that will appear as the subject line for every email
sent by this module. Text identifying the source as MICAS-X and/or your particular
experiment is suggested, such as “Alert from MICAS-X”. Finally, enter the addresses that
you wish to have e-mails sent to in the Recipients’ Addresses list. At least one address
must be provided, but more than one can be used to enable a group of people to receive
the email Alerts. Note that all emails sent by this Instrument will be sent to the entire
list of recipients and will use the same Subject line.

 Note that the password used with the server is saved in the configuration file. It
is saved in a scrambled format, making it very unlikely that it could be extracted and
used outside of MICAS-X, but the use of this Instrument is at your own risk. Note that
the configuration file is saved with the data, so the scrambled password will be archived
in numerous places.

mailto:dthomson@originalcode.com
https://www.python.org/downloads/windows/

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 118

 The Version parameter determines which of several versions of code are used to
send the emails. Each version has its own benefits and risks. It is also possible that
some versions may work successfully with some email servers while other versions do
not, so try using different versions if you have difficulty getting the email function to
work. Currently, the available versions are:

⚫ NI – This version uses routines written by National Instruments for sending
emails. A serious drawback of this version is that it will hang the entire MICAS-X
program when sending an email. The hang can be for as short as one second to
as long as 5 seconds or more. If you use this version, it is advised that MICAS-X
be configured to send e-mails only for very important notifications when the
program or hardware is not working properly. You should avoid using the email
function to send status messages when everything is working normally, as the
action of sending the email will likely cause a loss of data.

⚫ .NET – This version is based on an example found on the NI website. It makes
use of a .NET interface to access email functions built into the OS. This version
does not appear to cause MICAS-X to hang. It should be noted, however, that
this version can only send to one address at a time, so when multiple addresses
are specified, this version is called multiple times.

⚫ Python – This version uses a call to the Python language to send emails. This
version supports servers that use the “SSL\TLS” protocol.

 The NI and .NET versions have been found to work with servers that use the
STARTTLS protocol. In general, it is best to set the “TLS?” parameter True to work with
these servers. The Python version works with servers that use the “SSL\TLS” protocol.
Also set the “TLS?” parameter True to work with these servers as well. Set the “TLS?”
parameter false to work with servers that do not use encryption.

 It can be challenging to configure email server information. It is a good idea to
verify the server address, username, and password first by using them in another email
program. Always double-check the spelling of these items. Then try the various versions
and turn the “TLS?” parameter on and off to determine which combinations work with
your server. If more than one setup is found to work, choose the one that hangs MICAS-
X the least when it is sending an email.

 To have MICAS-X send an e-mail automatically, use the Alert Command,

described in section 14. The Alert Command can be used with a Trigger, a Sequence, a
Button, or sent from an external system. Use the bit value 16, 32, 64, or 128 in the
numeric parameter of the Alert Command to tell MICAS-X to send an e-mail alert when
the command is executed.

 It is recommended that you create a dedicated email account for use with
MICAS-X. Since MICAS-X will be sending e-mails only, and not receiving any, setting the
incoming message space to 0B can prevent spam email from wasting disk space. If a

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 119

dedicated account is created, then, in the unlikely event that the password is
compromised, no one’s personal email will be jeopardized.

 It is possible to create an email address for nearly any cell phone number. In this
way, the Email module can be used to send sms text messages. Each cell phone carrier
has a different format for such email addresses, so it is imperative that you know the
carrier of the phone number you wish to text. Refer to the carrier’s technical support for
information on how to format the email address, or search the internet for information.
Many websites list the common email-sms gateway addresses, including
http://www.makeuseof.com/tag/email-to-sms/

As of January, 2016, the following email addresses should work:
AT&T cellnumber@txt.att.net
Verizon cellnumber@vtext.com
T-Mobile cellnumber@tmomail.net
Sprint cellnumber@messaging.sprintpcs.com
Virgin Mobile cellnumber@vmobl.com
US Cellular cellnumber@email.uscc.net
Nextel cellnumber@messaging.nextel.com
Boost cellnumber@myboostmobile.com
Alltel cellnumber@mesage.alltel.com

 The Email Instrument is only available in MICAS-X for Windows, not MICAS-X-RT.

7.7.4 M-Link Server.vit

This Instrument is used to allow another instance of MICAS-X (the “client”

instance) to communicate with and control the instance of MICAS-X that is running this
Instrument (the “server” instance). When configuring this Instrument, one specifies the
Channel List that will be sent to the client instance. The default is “All” Channels, but one
can specify a shorter, more specific list of Channels if desired to improve clarity. In the
“client” instance, these Channels will have the prefix “ML” in addition to any prefix that
the M-Link modules have, to indicate that they originated on the “server” instance of
MICAS-X.

If the “Send all Log Messages” option is selected, then every message and error
that is logged on the “server” MICAS-X will be transmitted to the “client” MICAS-X as
well. Note that such messages will appear with a “ML” prefix (as well as any prefix that
the M-Link Server instrument has) on the “client” instrument to indicate that they
originated from the “server” instance.

The Update Time (ms) parameter determines how often the “server” instance of
MICAS-X refreshes the Channel values that it is sending to the “client” instance. A value
of 1000 is typical.

mailto:dthomson@originalcode.com
http://www.makeuseof.com/tag/email-to-sms/
mailto:cellnumber@txt.att.net
mailto:cellnumber@vtext.com
mailto:cellnumber@tmomail.net
mailto:cellnumber@messaging.sprintpcs.com
mailto:cellnumber@vmobl.com
mailto:cellnumber@email.uscc.net
mailto:cellnumber@messaging.nextel.com
mailto:cellnumber@myboostmobile.com
mailto:cellnumber@mesage.alltel.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 120

When using the M-Link system with a Channel List other than “All”, it is important
to note a potential issue that can arise. Consider a “server” system that has two
Channels, Temp SP, which is used to set the temperature setpoint of a heater, and Temp
(C), which measures the temperature of the heated element. Further assume that a
Channel List was used with the M-Link Server that only contained the Temp (C) Channel,
but not the setpoint Channel. On the “client” system, it will be possible to select the
“ML-Set” Command to set a Channel on the “server” system, and the “ML-Temp SP”
Channel will be available for use with that Command, even though it is not in the
Channel List of Channels being transmitted from the “server” to the “client” as data
Channels. All of this will work as expected. However, when setting up this Command on
the MICAS-X tab using the “Controllers” selection, MICAS-X attempts to display the
current value of the Controller Channel that will be set. Since that Channel is not
included in the Channel List, the “client” system has no knowledge of its value, and an
error will occur. One can either just ignore such errors, or one can ensure that all
Controller Channels on the “server” system are included in the Channel List being sent to
the “client” system.

7.7.5 Ocean Optics.vit

 The Ocean Optics Instrument is intended for acquiring spectra from various
Ocean Optics spectrometers. Any Ocean Optics spectrometer that is compatible with the
Ocean Optics instrument driver used in MICAS-X (currently OmniDriver 2.46) should
work with this MICAS-X Instrument, though not all the available functionality for the OO
spectrometers is included in this instrument. The Ocean Optics OmniDriver must be
downloaded from Ocean Optic’s website and installed before using this instrument in
MICAS-X.

 The Spectrometer # parameter is used to specify which OO spectrometer
attached to the computer is to be used by this instrument. Normally this is set to 0 when
only one spectrometer is in use. Note that although the OO Instrument is a .vit and can
therefore be instantiated more than once, the current version of this module (version
2.1.0) only supports one OO spectrometer in a MICAS-X configuration. Modifications will
be made in the future to allow multiple instances of this Instrument to be used
simultaneously with multiple spectrometers.

 Exposure Time (ms) defines how long the spectrometer will accumulate light
before transferring the data to the computer. Many OO spectometers have a lower limit
of exposure time around 5ms, so values below that limit should be avoided. The value
of this parameter is used for the Exposure Time when MICAS-X first starts running, but it
can also be changed at any time while the program is running.

 The # to Co-Add parameter defines how many spectra of the specified exposure
time are added together before the result is written to the data file as a complete, co-

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 121

added spectra. As with Exposure Time, this parameter can be changed after the program
is running.

 The On/Off parameter defines whether the Ocean Optics instrument begins
enabled (On) or disabled (Off) when MICAS-X starts. In its Off state, no calls are made to
the hardware, so in this state the OO Instrument will not generate errors if the
spectrometer is not currently hooked up to the computer. After MICAS-X is running, the
On/Off state can also be changed at any time.

 When the OO Instrument is On, it acquires the number of spectra specified by
the # to Co-Add parameter, adds them together, displays them (as they are being co-
added, and along with the most recent previous co-added spectra), and then writes
them to file when a full spectra has been obtained. The file is ASCII text, with two lines
of header. The top line has the label “Wavelengths”, as well as a row of comma-
separated wavelength values. The Second row has column headers for the first three
columns of data: Time, Exp Time (s), and # Co-Added. The time column is in the format
hh:mm:ss. The data file will automatically restart at the top of each hour.

7.7.6 Ramp.vit

 The Ramp Instrument is a module that can be used to create a linear ramp over
time of the value of one output (Controller) channel. This Instrument can be added to a
configuration multiple times, so that multiple ramps can be defined. The ramps created
with this instrument can have a time resolution of 10’s of milliseconds, whereas
Sequences can easily be used to create ramps with time resolution on the order of one
second. Thus, if a very smooth ramp is required, the Ramp Instrument may be more
useful than a Sequence. In addition, using the Ramp Instrument may be simpler than
defining a Sequence for the same purpose.

 The Ramp Output Channel is used to select which MICAS-X Controller Channel
will be ramped over time.

 The Ramp On Channel is optional. If it is left undefined (showing the value “–”),
the Ramp can only be turned on and off manually using a switch on the Ramp display.
(Note that the Ramp Instrument must be configured as Displayed in order to use this
manual switch.) If this channel is defined, then the Ramp will turn on whenever the
specified channel is non-zero. Changing that channel’s value to 0 will turn the Ramp Off.
If the Ramp mode selected is not one of the Repeated modes, then when the Ramp
finishes its normal run, the Ramp On Channel will be changed to a value of 0 by the
Ramp Instrument. Since the Ramp On Channel’s value can be changed by the MICAS-X
program, this Channel must be a Controller. An input Channel cannot be selected as the
Ramp On Channel.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 122

 The Ramp Initial Channel is optional. If it is left undefined (showing the value “–
”), the initial value of the Ramp will be selected from the Initial Value parameter, which
can only be changed manually by the operator, not programmatically. If the Ramp Initial
Channel is defined, then other functions within MICAS-X can alter the value of the
Ramp’s initial value by changing the value of that Channel. The Initial Value parameter is
therefore only used if the Ramp Initial Channel is undefined.

 The Ramp Final Channel is optional. If it is left undefined (showing the value “–
”), the final value of the Ramp will be selected from the Final Value parameter, which can
only be changed manually by the operator, not programmatically. If the Ramp Final
Channel is defined, then other functions within MICAS-X can alter the value of the
Ramp’s final value by changing the value of that Channel. The Final Value parameter is
therefore only used if the Ramp Final Channel is undefined.

 The Ramp Time Channel is optional. If it is left undefined (showing the value “–
”), the scan time of the Ramp will be selected from the Ramp Time (s) parameter, which
can only be changed manually by the operator, not programmatically. If the Ramp Time
Channel is defined, then other functions within MICAS-X can alter the value of the
Ramp’s scan time by changing the value of that Channel. The Ramp Time (s) parameter
is therefore only used if the Ramp Time Channel is undefined.

 The Ramp Mode is used to select what type of ramp will be created. The
Instrument can ramp up from the Initial to Final Value, down from the Final to Initial
Value, or Up and then Down, and each ramp type can be set for a single execution or
continuously repeated execution.

 The Ramp Scaling parameter defines whether the Ramp will be linear in time or
logarithmic.

 The Ramp Refresh Time (s) parameter defines how often the Ramp Output
Channel will be updated. This parameter can be made as small as 10 ms, or can be
multiple seconds or longer. If times less than 100 ms are used, it is advised that the
program be tested carefully to ensure that it performs as expected. The minimum time
that can be used depends on the performance of the computer on which the program is
being run, the other items configured within MICAS-X, and the hardware associated with
the Ramp Output Channel.

 Note that the ramp value is calculated by taking the elapsed ramp time (current
time minus the time that the ramp started) divided by the Ramp Time to arrive at a
fraction of the ramp completed. The span of the ramp (Final minus Initial Values) is then
multiplied by the fraction completed, and added to the Initial Value to arrive at the
Ramp Value at any particular time.

 Once the Ramp starts, the Initial and Final Values and the Ramp Time are saved
in memory. If the Channels defining those values change after the Ramp has started, the

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 123

changes are therefore ignored, and the Ramp is calculated only based on the values that
were present when the Ramp started.

 The Ramp Instrument is only available in MICAS-X for Windows, not MICAS-X-RT.

7.7.7 RT File Transfer.vit

 The RT File Transfer instrument automates the transfer and archiving of data files
created on an embedded RT target by MICAS-X-RT to the Windows host. After
transferring files, they can be deleted from the sender in order to maximize disk space.

 The “FTP Server”, “User Name”, and “Password” parameters are meant for
gaining accesss to the ability to transfer files to the computer. The Delete? Parameter
will either delete or keep remote files after moving them. The Max Files parameter will
prevent any one file transfer from occupying the system for too long. It is most useful
when backing up a system that hasn't benn backed up in a while. 0 will mean there is no
limit. The limit rolls over every 2 hours

7.7.8 SMPS Ramp.vit

 The SMPS Ramp is an extension of the Ramp Instrument, hence many of the
parameters have identical definitions and functionality. For explanations of the Ramp
Output Channel, Ramp On Channel, Ramp Initial Channel, Ramp Final Channel, Ramp
Time Channel, Scaling, Initial Value, Final Value, Ramp Time (s), Ramp Mode, and Ramp
Refresh Time (s) parameters, see the section above on the Ramp Instrument.

 The SMPS Ramp Instrument is intended for acquiring data from a scanning DMA
(Differential Mobility Analyzer). Hence in addition to the above parameters, it has
parameters that define how the particle count data is acquired, and what the flow
conditions are. These parameters include the Particle Count Channel, which must be set
to the data channel that contains particle counts. Note that the design of the SMPS
Ramp Instrument is such that the Particle Count Channel should acquire data in its own
loop at a 10 Hz loop rate. The Particle Count Time Channel must be set to the
timestamp channel of the Driver that contains the Particle Count Channel. This channel
is used by the Instrument to detect when new particle count data is available.

 The CPC Aerosol Flow Channel must be set to a data channel that contains the
flow rate of the CPC particle counter, in units of cm^3/s. The DMA Aerosol Flow Channel
must be set to the data channel that contains the flow rate of the aerosol inlet of the
DMA, and the DMA Sheath Flow Channel refers to the Sheath Flow of the DMA. Both
DMA flows must be in units of LPM.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 124

 The Temperature and Pressure Channels must be set to data channels that
contain the values of the DMA column temperature and pressure, in units of degrees C
and kPa. Note that the flow, temperature, and pressure channels can be from real
measurements, if the required sensors exist, from Equation channels that rescale
measurements that are in other units, or from Manual channels that are used just so
that the operator can enter the appropriate values. Also, note that Globals 4, 5, and 6
must be set to the values of the DMA column length in cm, and the inner and outer DMA
diameters (R1 and R2) in cm.

 The # of Bins parameter specifies how many bins the voltage scan is separated
into and into which the particle counts are accumulated. The Plumbing Time (s)
parameter specifies the delay due to plumbing length and flow rates between when a
particle is transmitted by the DMA until it is detected by the CPC.

 The SMPS Ramp Instrument is only available in MICAS-X for Windows, not
MICAS-X-RT.

7.7.9 Speech Recognition.vit

The Voice Recognition Instrument Is useful for giving commands to MICAS across
the room. For example, one could start and stop sequences while attending to the
experiment and not present at the computer. This instrument uses the Windows Speech
Recognition utility. It is recommended to train that utility before using this instrument.

The Voice Recognition configuration editor uses the“Phrases”box to select the
phrase to be recognized by the computer. Clicking on a phrase selects it and makes it
the active phrase. Once it is highlighted, you can change its text. The “Delete Selected

Phrase”button will delete the active phrase. The“New Phrase”button will create a
new phrase with a default name. The parameters to the right program the command for
the active phrase to execute. The Command selection controls which MICAS command
is to be used, and the parameters below it are the parameters for that command. The
Phrase Prefix is a phrase that will be necessary to make the computer recognize a
command. If the prefix is left blank, and the computer's speakers are turned on, the
computer can get itself in a loop, issuing and acknowledging the same command, hence
it is recommended to always use a prefix, such as “MICAS”. The Speech Recognition
Starting Setting controls how the speech recognition instrument starts: Off, Test, or On.
The Score Threshold is used to adjust how accurately the speech engine must match a
phrase before acting on it. This parameter ranges from 0 (no match) to 1 (perfect
match). A value of 0.85 to 0.9 usually works well.

The display for the speech recognition instrument displays each command
recognized. The Phrase Prefix display shows the prefix which must be used before each
phrase. The Speech Recognition Setting controls how the computer will react to the

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 125

commands. Off will have no reaction, Test will only say what command is recognized,
while On will execute the command.

In order to issue commands, first make sure the Speech Recognition setting is set
to Test or On. Then clearly say the prefix and then the phrase. For example, if the prefix
is MICAS and the command is “say hi”, then say MICAS, Say hi”. If the computer has
trouble recognizing the correct command you can try to make them more distinct or
train the windows speech recognition engine further. The Score for matching a phrase is
displayed, and the Score Threshold can be adjusted while the program is running to
further optimize speech recognition.

7.7.10 Text to Speech

The Text to Speech instrument is mostly used for voicing alarms. When included
in a MICAS configuration, the text to speech instrument can be used to verbally
announce the alarm. The configuration editor of the Text to Speech instrument has no
parameters.

The display tab for the Text to Speech instrument allows the user to test
messages. Either type a message to be spoken into the Message to Test space or copy
and paste from the Pre-Programmed messages. Then click the Read button. The “Last

Message Read”textbox will display the text of the message that was read most
recently.

 The Text to Speech functionality is normally used with via the Alert Command.
Using bit 8 (value 256) of the Value parameter causes the text of the Alert to be sent to
the Text to Speech Instrument.

7.7.11 WebCam.vit

7.7.12 Web Page.vit

 The Web Page Instrument displays a web page in an embedded browser.
Customization can allow for extra functionality like ingesting data from the website into
MICAS.

 The URL parameter defines what page the browser will load. This should be
formatted as a regular URL. The Cycle Time parameter defines how often the web page
will send an image and refresh. The “SV to Use” parameter defines whether or not to
send an image of the site to a shared variable and which shared image variable. O will

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 126

not send the image, 1 will send it to Image1 shared variable, 2 will send it to the Image2
shared variable.

 The “Region of Interest” parameter defines what part of the image will be shown
on the display. The indicators on the chamber display are 480x360 pixels each.

 This instrument may cause labview to crash when MICAS is stopped. Additionally,
not all web page contents may be forwarded to the shared variables and some parts
may be blank since the web page is controlling those parts, not MICAS.

7.8 Displays

 To read about how to use Displays while MICAS-X is running, refer to the Displays

section of this manual (9.6.9). For instructions on how to add Displays to the MICAS-X

configuration, refer to section 7.4.1 To configure individual displays, select ‘Displays’ in
the ‘Components’ menu in the upper-left-hand corner of the MICAS-X Configuration
Editor. Then click the desired Display in the ‘Displays’ box that will appear below
‘Components.’

7.8.1 3Graphs.vit

 The 3Graphs Display presents three time-series graphs, each with two traces,
one on the left Y scale and one on the right. To configure the 3Graphs display, begin by
selecting which channel list will supply the channels that will be viewable on the graphs.
Although the channels being graphed on each graph can be changed while MICAS-X is
running, only those channels that are part of the selected Channel List will be available.
If it is important for the user to be able to access any and every Channel, the “All” List
can be selected, though be aware that it can be difficult to find specific Channels in the
list of All Channels when MICAS-X is configured with many Channels.

 Each graph (1, 2, and 3) has options to select what is displayed on the left
(‘GraphX Left’) and right axes (‘GraphX Right’). Use the drop down menus to select which
channels are displayed on each graph when the program starts. Note that the user can
change which Channels to display when the program is running.

 Each left and right axis also has options to select whether the axis starts in an
auto-scaling mode or a manual scaling mode. Note that for Manual Scaling, there is
currently no way to define the minimum and maximum values of the scale. These can
be edited by the user when the program is running, to set them to appropriate values
for the data being displayed. Click the ‘Points?’ buttons (options for left and right can be
used independently of one another) to display points where each data point is collected,
in addition to being connected with a line. This can be useful in certain situations, such
as determining which periods of time data is missing from.

 On the right-hand portion of the screen, select how much time history should be
displayed in the trend graphs by selecting an option on the drop-down menu labeled

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 127

‘History Length.’ The value of this history length can be changed when the program is
running. This parameter merely sets its initial value. Note that “Manual” and “From
Pointer” are not allowed as initial values.

 Adjust the background color of the graph by clicking the shaded box labeled
‘Graph Background’ below the ‘History Length’ parameter.

 The ‘Show Message Log’ parameter in the bottom-left-hand portion of the
window allows the user to determine if Message Log controls on the 3 Graphs display
will be shown. If these are made visible, the operator can use them to enter notes into
the log file directly from this Display.

 As with all Displays, the 3Graphs Display works only in MICAS-X for Windows and
is not supported in MICAS-X-RT.

7.8.2 Big Display

 The Big Display is designed to show a few key Channels in large fonts so as to
allow them to be viewed at a distance. It allows for up to three Channels to be displayed
as LEDs, and for up to three Channels to be displayed as numerics. The LED displays map
a value of 0 to Off and any other value to On. Note that if any channels are left
undefined (e.g. “–”), those indicators will be made invisible on the Big Display. It is often
useful to configure this display to open up outside of the MICAS-X window so that it is

always visible. (See section 7.4.1 for information on setting the “Outside?” parameter
for a Display.)

 As with all Displays, the Big Display works only in MICAS-X for Windows and is
not supported in MICAS-X-RT.

7.8.3 Document Display.vit

 The Document Display is intended for providing instructions and information to
the operator of MICAS-X. This information can be synchronized to the operation of the
program. In the Document Editor, add documents to the list by clicking on the folder
browse button to the right of the document list. Remove a document by pressing the
Delete button to its right.

 Note that all documents used with the Document Display must be located in the
“Documents” folder in the MICAS-X support folder. (When MICAS-X is used inside
LabVIEW, the support folder is C:\MICAS-X. When used as an executable, the support
folder is C:\OCC\MICAS-X Support.)

 Use the Initial Document and Initial Section parameters to determine what
documentation will be displayed when MICAS-X starts. The “Include Time?” parameter
applies only to the Document Driver. The Document Driver can be used in conjunction
with the Document Display. It creates two channels, Document Number and Section

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 128

Number, which can be used to programmatically control the display of the
documentation.

 The Document Display can display several types of documentation. These
include .txt files (simple text files), .mdoc files (a simple text file with a small amount of
additional formatting), and .rtf files (rich text format files, such as can be created with
WordPad, Word, or Open Office Writer). Rich text format files provide the most options
for formatting the displayed text. .mdoc files allow MICAS-X to access and display sub-
sections of a document, whereas .txt and .rtf files are only displayed as one section. The

mdoc Editor Utility (see section 11.5) provided with MICAS-X can be used to create
.mdoc files (which can also be created manually in any text editor).

 Since the Document Display uses a .NET accessor to display .rtf files, .NET must
be properly installed on the target computer for this Display to function. When MICAS-X
is run inside LabVIEW, this is usually not an issue, since the LabVIEW installation ensures
that .NET is installed. If MICAS-X is used as a compiled .exe program, it may be
necessary to install the .NET framework before this Display functions properly.

 When the Document Display is running, the user can access any section of any
document by using the Document and Section controls at the top of the display. In
addition, new documentation can be read in by pressing the Load A Document button.

 MICAS-X can also present documentation programmatically. To enable this,
include the Document Driver in the MICAS-X configuration as well as the Document
Display. Note that both the Document Driver and the Document Display must have the
same prefix in order for them to work together.

 As an example, consider a Sequence that has been created which steps the
operator through several actions to complete an experiment. The Sequence could use
the Alert command to present the user with small amounts of information. The Ask and
Ask(Num) commands can be used to obtain information from the operator as the
Sequence progresses. In addition, the Document Display could be used to present larger
amounts of text, such as instructions and explanations. The Sequence could use the Set
command with the Document and Section channels to ensure that the proper
information is presented to the operator at the appropriate times during the Sequence.

 Note that, as with any Display, the Document Display can be configured to be
displayed inside MICAS-X in a tab of its own, or Outside of MICAS-X as its own window.
When displayed Outside, the operator can position and size the Document Display
window. MICAS-X will remember the most recent size and position of this window each
time it is started. This allows the operator to place the instructional documentation in a
convenient location on the computer screen, so that it is always accessible when
needed, without having to move between tabs to see the documentation.

 It is important to keep in mind that the Document Display is intended for
presenting short instructions and information. This module does not do any

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 129

sophisticated memory management. When a document is loaded into the Display, the
entire document is read from disk into memory. It is therefore unwise to read especially
large documents into this module, as performance issues could result.

 As with all Displays, the Document Display works in only in MICAS-X for Windows
and is not supported in MICAS-X-RT.

7.8.4 Sequences Display.vi

 The Sequences Display provides a tab in MICAS-X that shows all the Sequences as
well as their current running state. Sequences can be used in MICAS-X without including
the Sequences Display. The Sequences Display is included in MICAS-X by adding it to the

Displays list on the MICAS editor, as described in section 7.4.1. There is no additional
configuration specifically for the Sequences Display.

 If Sequence Sets have been configured, a Sequence Set control appears on the
right of this Display. This control can be used to select which Set of Sequences is
currently displayed.

 As with all Displays, the Sequences Display works only in MICAS-X for Windows
and is not supported in MICAS-X-RT.

7.9 Displays Available at Additional Cost

7.9.1 Indicators Display.vit

 The Indicators Display allows one to configure a Display with anywhere from 1 to
32 channel values displayed. Each channel can be configured to be a gauge, bar,
numeric, or LED display.

 Begin configuring the Indicators Display by selecting the number of rows and
columns of indicators you wish to include. This Display was originally designed to fill a
screen at 1920 x 1080 resolution (when set to be “Outside” of MICAS-X). In this case, all
4 rows and 8 columns can be displayed. When used inside of MICAS-X (as one of the
tabs), 3 rows and 4 columns of indicators can be used. (A future version of this display
will allow the size of the Indicators Display window to be adjusted to fit the number of
rows and columns selected. With the initial release, the window size is fixed.)

 After selecting the number of rows and columns, the grid of indicator definitions
will adjust to the selected size. Click on each one of the grid locations for which you want
an indictor to be displayed. When a location is selected, it turns grey, and its
configuration information appears near the bottom of the screen. Use these parameters
to select which kind of indicator will be used in that location, which channel’s value to
display in that indicator, and the additional parameters that may be required for that
indicator type, as described below.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 130

 If “none” is selected as the type, the grid location on the Indicators Display will
remain blank.

 If “Gauge” is selected as the type, a round gauge display will be used in the
associated grid location. For this indictor type, the minimum and maximum displayed
values must be defined. If the channel value exceeds these limits, the gauge display is
pinned at the limit.

 If “Bar” is selected as the type, a rectangular bar indicator will be used in the
associated grid location. For this indictor type, the minimum and maximum displayed
values must be defined. If the channel value exceeds these limits, the gauge display is
pinned at the limit.

 If “Numeric” is selected as the type, a text box “numeric” indicator will be used in
the associated grid location.

 If “LED” is selected as the type, a round LED Boolean indicator will be used in the
associated grid location. In this case, the “False Value” parameter defines the numeric
value associated with the LED False state. Normally, this is “0”. Any value other than the
False Value will cause the LED to display its True state. If the “NaN = False?” box is
checked, then the value “NaN” (Not a Number) will also be displayed as False, in
addition to the False Value. This can often be useful since NaN is used in MICAS-X when
a Driver is disabled or not ready, and often those conditions should not be interpreted as
“True”.

7.9.2 Map.vit

 The Map Display allows one to view any channel’s data color coded on a map,
using GPS coordinates to mark the path over which the data was acquired. This display
can be useful for mobile labs, airborne experiments, and similar applications. The maps
for this Display must be loaded from an internet map tile archive ahead of time.
Instructions for loading map tiles are contained in an additional document. Since the
map tiles are pre-loaded, no internet connection is needed during acquisition to display
data on the map.

 The Map Folder Name parameter must contain the name of the map tiles folder.
This folder must be located in the \Maps directory within the MICAS-X support directory:
e.g. C:\MICAS-X\Maps for source code, or C:\OCC\MICAS-X Support\Maps for the
executable version of MICAS-X.

 The Vehicle Mark File parameter should contain the name of the .png file that
will be used to display the vehicle location. This file must be in the \Objects subdirectory
of the Maps directory mentioned above.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 131

 Use the Update Time (ms) to specify how often the Map Display is updated. If the
GPS and/or displayed channel data is acquired at 1 Hz, a value of 1000 ms would be
appropriate.

 Center Latitude and Center Longitude define the center point of the map when
MICAS-X starts. The Min Zoom and Max Zoom should be set to the minimum and
maximum zoom levels of the map tiles that have been pre-loaded. Zoom levels range
from 0 (the entire world) to 19 or more (roughly the size of a single building). Keep in
mind when loading tiles that adding higher levels of zoom will dramatically increase the
tile disk size and the download time. Set the Initial Zoom parameter to the zoom level
you wish to have the map set to when MICAS-X starts.

 The Latitude and Longitude parameters should be set to those channels which
contain the vehicle’s latitude and longitude data, typically from a GPS. The Data Channel
parameter defines which channel is color-coded and displayed at the coordinates
specified by the Latitude and Longitude channels.

 The History Length parameter defines the starting value for the History Length
control on the Map Display. This control can be changed while MICAS-X is running to
select what time selection of data to display on the map.

 The Max # Points parameter defines the maximum number of Lat/Long/Data
points to display on the map at any one time. If more points than this are in the time
selection, the data will be decimated before being displayed. With a large number of
points, this decimation is usually undetectable to the human eye, but without a
reasonable limit to the number of points displayed, the Map Display can become very
sluggish and unresponsive.

 Markers are an additional feature that can be useful for some mapping
applications. Markers are small .png files which can be placed on the map at a specified
location. Currently, markers must be defined in the configuration file, e.g. they cannot be
added to the Map at when the program is running.

 The Markers array allows one to specify the Latitude, Longitude, and .png image
to use for each Marker. To delete a Marker, right click on the array near the unwanted
marker until you are able to get a right-click menu showing with “Delete Element” as
one of the options. Select Delete Element to delete the Marker you clicked on.

 Note that there is an array of Marker Images to the lower left of the Markers
array. This array displays all the .png files in the \Maps\Objects directory. These names
can be copied and pasted (CTR-C, CTR-V) into the Markers array to ensure proper
spelling of the file names.

 The “Recenter Markers after each Zoom” option has a fairly subtle operation. The
Map software locates a Marker at specific coordinates relative to the upper left corner
of the Marker image. For the MICAS-X Map Display, the Marker coordinates are

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 132

mathematically adjusted so that the Marker is centered over the coordinates that were
specified in the configuration file. However, this means that whenever the map is
zoomed in or out, the Marker position on the map must be re-calculated to keep it
centered on the correct coordinates. Unfortunately, when more than a few Markers are
used on a map, repositioning all the Markers is very slow. Thus setting this parameter to
“Don’t Re-center Markers” greatly improves the map drawing rate in such a case. When
this is done, the errors generated by not repositioning the Markers can be minimized by
setting the Initial Zoom to a value close to the Max Zoom. E.g. if the Markers are first
drawn at (or near) maximum zoom, their calculated position will be very close to correct
as the user zooms the map in. On the other hand, if the map is initially drawn at a very
low zoom and the Markers are not Re-centered as the map is zoomed in, the marker
positions will be very noticeably out of position at higher zooms.

7.9.3 Multi Display.vit

 The Multi Display is a single, flexible Display that can be configured to have up to
six different Views. Each View defines a set of Channels to graph, a set of Buttons to
use, and a set of Options.

 The Multi Display contains two time-series graphs, and each graph supports two
Y axes, one on the left and one on the right. The Top Graph can have up to 8 Channels
displayed on it, with any channel on either axis. The Bottom Graph can have up to 4
Channels displayed, again with any channel on either axis. For the graphs, the channels
are preselected in the configuration, rather than being user-selectable at run time. Each
Channel graphed also displays its current value, and the data can be displayed with or
without points.

 Up to four Buttons can be defined for each View, which appear across the top of
the Display. Each button can be configured to execute one Command when changing
from False to True, and another when changing from True to False. The configuration of
the Buttons is similar to those across the top of MICAS-X.

 Up to five Options can be defined for each View. An option can be a single
Channel numeric indicator, a Controller Channel that can be changed by the user, a T/F
Indicator, a Switch (T/F Controller), a Sequence, an Enumerated List Indicator, or an
Enumerated List Controller. Controllers, Switches, and Sequences are configured just as
they are for the Control Tab of MICAS-X, except that Sequences are displayed only with
the Sequence name, not with custom text for when the Sequence is Off or On. A T/F
Indicator shows the value of one channel as either True or False, where the False value is
defined and any other value is interpreted as True. (Generally, the value of 0 should be
used for False, as that is how MICAS-X interprets any channel when it is used as a T/F in
other contexts.) An Enumerated List allows a list of text values to be associated with a
list of numeric values. These lists can be useful for displaying the state of a system,
when the state is represented as a defined list of integer values. E.g. 0 = Stopped, 1 =

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 133

Stand-by, 2 = Running, 3 = Error. Enumerated List Indicators only display the value of a
channel as a text value. Enumerated List Controllers allow the operator to set the value
of a channel based on the text value, which is then converted to a numeric value within
MICAS-X. Note that both types of Enumerated Lists automatically include a text value of
“(other)”, which is used to display the channel if that channel gets a value, from another

part of MICAS-X, which is not included in the list. See Section 7.4.12 for information on
configuraing Enumerated Lists.

 As with all Displays, the Multi Display works only in MICAS-X for Windows and is
not supported in MICAS-X-RT.

7.9.4 Recipes.vi

 The Recipe Display allows the end-user of MICAS-X to create and run Reicipes,
e.g. sequences of commands. The primary purpose of this Display is to allow an end-user
who is not familiar with the subtle details of MICAS-X, including Sequences and
Commands, to create Recipes at run time so that new sequences of operation can be
executed with relative ease. Note that once a Recipe has been created, it appears in
MICAS-X as a Sequence, and can be viewed and interacted with as any other Sequence,
including through the Sequence Display.

 Recipes are made up of Recipe Steps and Commands. Recipe Steps are pre-
defined Sequences that have been designated specifically as Recipe Steps. In general, it
is advised to have someone familiar with MICAS-X create these Recipe Steps as
Sequences in the Sequences Editor. Once they are defined, they can be used by the end-
user of MICAS-X as described below to create flexible variations on test sequences.

 After having created the basic Recipe Steps as Sequences in the Sequences
Editor, use the Recipes Editor to designate these Sequences as Recipe Steps. This is done
in the Steps array on the right side of the Recipes Editor. Press the green Insert button
next to the first unoccupied Steps entry to insert a new Step. Then click on the Sequence
parameter to get a drop-down list of all the Sequences defined in the current
configuration file. Select that Sequence that you wish to designate as a Recipe Step.
(Note that any Sequence should only be added once as a Recipe Step, and not all
Sequences need to be designated as Recipe Steps.) It is always a good idea to use the
Description field to document the intended purpose of this Recipe Step.

 Check the “Wait Until Done?” parameter if you want the Recipe to finish this
Step before continuing on to the next Step. Checking this parameter is the most
common situation. If a Step executes a single, very fast Command, such as setting a
channel to a new value, then it may not be necessary to check this parameter.

 The “Parameter Channel” is optional. It can be left as “--“ to ignore it, or it can be
set to any output (Controller) channel in MICAS-X. If a channel is selected, then when
the step is run, that channel will be set to a specific value before the Recipe Step

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 134

executes. To understand the use of this parameter, consider a Recipe Step that sets the
temperature setpoint of a heater to a value. This Recipe Step may have a single “Set”
Command, or could include other Commands as well. The name of this example Recipe
Step is “Set Temperature”. When this Recipe Step is used in a Recipe (as explained more
later), there will be a value associated with each instance of it. Thus the same Recipe
Step can be used first to set the heater setpoint to 30 C, and it can be used later in the
same Recipe or a different one to set the heater setpoint to 50 C.

 In the Configuration editor, Recipes can only be deleted, not created. (Recipes
are created at run-time within the Recipes Display) To delete a Recipe, click the “Delete”
button to the right of the Recipe to be deleted. The “Recipes” list displays all recipes and
their descriptions. The “Test Recipe” parameter defines which recipe will be in the Test
Recipe control at run-time. “Update Time” determines how often the Recipes display is
updated. If it is left as 0, it will update once a second.

 In the Recipes Display are two tabs, the Excute tab and Recipe Editor tab. Above
the tabs is the Test Recipe control. Use this to select a Recipe to run, then press the Start
button to the right to execute that Recipe. The Recipe Steps array on the Execute tab will
show the Steps in that Recipe, and the blue arrow will indicate which step is being
executed. The Execute tab also has a 2 channel graph for displaying time series of any
two channels of data.

 The Recipe Editor tab in the Recipes window of MICAS is used to create Recipes.
In order to create a recipe, press the “New” to start a Recipe from scratch, or press the
“Copy” button to use an existing Recipe as your starting point. Name the recipe and
describe it with the “Description” box. Add steps with the insert buttons. The Label field
is used as a description of the step as well as for the Target for any Goto commands.
Step Type determines if the step is a Recipe or Sequence step. If it is a sequence step,
the Command, Channel, Value, Condition Condition Channel, and Threshold parameters

will be available. These are the same parameters used with the Sequence editor (7.8.4).
When the step is a Recipe step the Recipe Step, Parameter Channel and Value
parameters are available. The Recipe Step parameter allows for the selection of which
Recipe Step to run, and the Parameter Channel displays the channel assigned in the
configuration editor. The Value determines the value to assign to the channel in
Parameter Channel when the Recipe Step is run.

7.9.5 XRT Sequences Display.vit

 This Display is very similar to the Sequences Display. It runs on a Windows
version of MICAS-X, but displays the Sequences that are running on a MICAS-X-RT
embedded program. For this display to work properly, the Sequences Driver must be
included in the MICAS-X-RT configuration. From this Display, the current status of each
Sequence on the RT platform can be viewed, and Sequences can be started, stopped,
and paused. Note that this display updates only as often as data is acquired on the

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 135

Windows host via the MICAS-XRT Driver, so the updates on this Display are usually less
responsive than on the standard Sequences Display.

 If Sequence Sets have been configured, a Sequence Set control appears on the
right of this Display. This control can be used to select which Set of Sequences is
currently displayed.

 As with all Displays, the Sequences Display works only in MICAS-X for Windows
and is not supported in MICAS-X-RT.

7.9.6 XYZ Graph.vit

 The XYZ Graph Display is used to plot color-coded data vs both x and y axes. For
example, one can use a Longitude channel for X, a Latitude channel for Y, and a
temperature channel for Z to graph a geographic distribution of temperatures.

 Select which channel list to pick observed channels from by using the drop-down
menu of the ‘Channel List’ box at the top of the screen. Although the channels being
graphed can be changed while MICAS-X is running, only those channels that are part of
the selected Channel List will be available. If it is important for the user to be able to
access any and every Channel, the “All” List can be selected, though be aware that it can
be difficult to find specific Channels in the list of All Channels when MICAS-X is
configured with many Channels.

 Below, under the heading of ‘Channels to Display’, select which channel is to be
displayed on each axis by selecting the desired channel in each of the drop-down menus
of Channels. Select minimum and maximum values for this channel (when manually
scaled) by entering the desired numbers in the ‘_ Min” and ‘_ Max’ parameters.
Complete this process for the X, Y and Z axes. Also set the Auto-Scale/Manual Scale
parameters to the scaling behavior that you wish the axes to have when the program
starts.

 To define how much time history should be displayed in the XYZ graph, select the
desired length of time from the ‘History Length’ drop-down menu in the upper-
righthand portion of the screen. Note that “Manual” and “From Pointer” are not
allowed as initial values for this parameter.

 The ‘Marker’ switch below this will, if clicked, enable the Marker functionality on
the XYZ Graph while the Program is running. The Marker allows the operator to place
one reference marker, either at the most recent (current) value, or at an arbitrary
location specified by the operator. The ‘Mark Current Value’ switch, located below the
‘Marker’ switch, if clicked true, will mark the current X,Y, Z value with a bright green X.

 As with all Displays, the XYZ Graph Display works only in MICAS-X for Windows
and is not supported in MICAS-X-RT.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 136

8 Tools

The Tools entry in the Components menu does not contain editor windows that
configure specific parts of the configuration file. Instead, it present a number of special
tools that can be of use when editing a configuration.

8.1 Channels

 The first entry in the Tools list in the Configuration Editor is “Channels”. The
Channels screen a tool for reviewing and checking all the Channels currently defined in
the configuration being edited. The left-most array lists all the Channels in the
configuration. The second array lists the input Channels, and the third array lists the
Controllers, or output, Channels.

 To the far right on this screen are two additional arrays: Conflicting Channels and
Partially Conflicting Channels. Conflicting Channels lists any Channels that were found to
exist twice with the same spelling in the current configuration. Partially Conflicting
Channels lists any Channels such that one Channel is a sub-string of another Channel.

 In addition to simply creating confusion, Conflicting Channels can be problematic
in MICAS-X, since, for example, it is indeterminate which Channel would be set if a “Set”
Command were executed with the duplicate Channel name as the target.

 Although Partially Conflicting Channels have unique names, they can cause
problems if the Equations Driver is used and references a Channel with a Partially
Conflicting name. Take for example the case where there is one channel named
“Voltage” and another channel named “High Voltage”. Also assume that there is an
Equation defined as:

 Output Volts = 10 x High Voltage

 When the Equations driver parses this equation, it could potentially find the
word “Voltage” and replace that word with the value of the “Voltage” channel. It would
be left with the word “High” which did not correspond to any operation or Channel, and
would therefore cause an error in the parsing.

 Use the Channels screen to review your configuration and ensure that each
Channel in your configuration is unique. Furthermore, if you are using the Equations
Driver, use the Partially Conflicting Channels list to ensure that no Channels that are
used in Equations have Partial Conflicts.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 137

 Note that some Partially Conflicting Channels are unavoidable. For example, the
Controllers Driver can be used to configure PID loops. In this case, a Mode Channel is
automatically created for each SetPoint Channel, so that the loop can be changed
between Manual and PID modes. The Mode Channel has the same name as the
SetPoint Channel, but with the word “Mode” in front of it. Hence the SetPoint Channel
and its Mode Channel will inevitably be Partially Conflicting Channels.

8.2 Rename

 The Rename is used to rename Driver channels in more complex configurations.
Sequences, triggers, and options reference channels by name. If any of these items have
been configured, and then a channel name is changed within a Driver configuration, the
new name will not be propagated to all the references throughout the configuration file.
The Rename Tool is intended for handling this situation. Here, you first select a Driver.
The Editable Names list will then contain the names of the channels associated with that
Driver which can be edited. (Some Drivers have pre-determined, hard-coded names
which cannot be edited.) Select a Channel with the Editable Names menu, then enter
the new name for that channel in the “New Name” option and press Change Name to
update the configuration file so that all references to the channel are properly changed.
The # of Instances displays how many changes will be made to the configuration file,
which can be useful in verifying the change.
 Note that the Constants and Globals are not traditional Drivers, but are built in to
MICAS-X at a lower level. Thus Constant and Global Channels cannot be renamed using
this tool. If you rename a Constant or Global, you must manually find all references to it
in the configuration file and change them as well.

 The Rename Tool also has a full text display of the current configuration file,
along with a “Search For:” field. It can often be useful to search for a Channel name,
then use the Find First and Find Next buttons to display where that Channel name
appears in the configuration file before renaming the Channel. In addition, any string can
be searched for using this Tool, so although you cannot rename Sequences or Triggers
with this Tool, one can search for all the references to those items to help decide how to
deal with them.

8.3 Rename Prefix

 The Rename Prefix Tool can be used to take an existing Driver that is already
configured in MICAS-X and assign it a new Prefix. If you just change the Prefix of a Driver
that is already configured by using the Acquisition Editor, all the parameters for that
Driver will be reset to their defaults. Using this Tool allows the Driver to be assigned a
new Prefix without losing its configuration

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 138

8.4 Alert Calc

 This configuration panel allows you to determine the proper value to be used for
the Alert Command, to achieve the desired functionality. See Section 15.1.1 for an
explanation of the values used with the Alert Command. This panel also lets you test
the .wav files used for Alert sounds. Note that any desired .wav file can be renamed
appropriately and placed in the Resources directory to use that sound with an Alert.

8.5 Channel Scaling

 This configuration panel allows one to calculate scaling coefficients to use with
various Drivers. Currently, this panel includes a tool for converting two data pairs to a
linear scale. E.g. high and low values are entered for the measured data and for the
corresponding data in engineering units, and the appropriate slope and offset are
calculated which can be used to scale the data from measured units to engineering
units.

 For example, assume a pressure gauge outputs data from 0 to 10V which, and
has a full scale range of 15 psi. Then the values

Hi Measured Value = 10

Low Measured Value = 0

Hi Engineering Value = 15

Low Engineering Value = 0

will yield the results: Slope = 1.5, Offset = 0

 A tool for calculating a least squares polynomial fit to sample data is also
provided. When calibration data is available as a table, this tool can convert the table
into a set of polynomial coefficients which can be used to scale a channel

9 MICAS-X Operation

 This chapter covers MICA-X for Windows. See Chapter 10 for information on the
operation of MICAS-X-RT.

Most of the functionality of the MICAS-X program is contained in a single window
named “MICAS-X”. A series of tabs allows numerous displays to be presented within this
window. Menu items and a row of buttons and indicators above the tabs provides
certain functionality that is always present regardless of which tab is being viewed.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 139

9.1 Menus

9.1.1 Program Menu

The Program menu contains up to six items:

⚫ Open Support Folder – Selecting this menu item will open the MICAS-X support
folder, located under C:\OCC\MICAS-X Support.

⚫ Open Data Folder – This menu item will open the current data folder, located

under C:\OCC\MICAS-X Data.

⚫ Quick Graph – This menu item opens a dialog that allows you to configure and
launch a time-series graph window.

⚫ Save Screen to JPEG – This menu item takes a screenshot of the current window
and saves it as a .JPEG image on your computer in the current data folder.

⚫ Save Screen to PNG – This menu item takes a screenshot of the current window

and saves it as a .PNG image on your computer in the current data folder.

⚫ Log a Message – This menu item is used to present a floating dialog that allows
the operator to write any message or comment and send it to the log file. This
allows documentation of the circumstances during a program run.

⚫ Password – This menu item is only present when a password has been defined

for the executing configuration file in use. It is checked when the password is
being enforced, and is unchecked when the password is not being enforced.

⚫ Exit – Closes MICAS-X and quits the program.

9.1.2 Drivers Menu

 This menu has one entry for each Driver present in the current configuration, as
well as the menu items “Enable All Drivers” and “Disable All Drivers”. This menu is used
to enable or disable any or all Drivers. Any Driver that is enabled has a check mark next
to it, and its name is followed by “ - Enabled”. And disabled Driver does not have a check
mark next to it, and its name is followed by “ – Disabled”. The “Enable All Drivers” and
“Disable All Drivers” menu items at the bottom of the menu can be used to affect all the
Drivers at once.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 140

9.1.3 Windows Menu

 This menu allows quick access to any tab of MICAS-X or any Display or
Instrument window that is configured to be “Outside” the main tab structure. Each tab
and each “Outside” Window will have an item in this menu, which when selected will
cause that tab or window to be displayed frontmost. Note that these menu items refer
to the tabs and Windows by their “Tab Name” parameter. If the Tab Name parameter is
blank for an Instrument or Display, the Instrument or Display name, with prefix, is used
for the Tab Name. Note that if two or more tabs or Windows have the same Tab Name,
none of those tabs or Windows will respond to their corresponding menu item.

9.1.4 Utilities Menu

This menu includes options to run each of the Utilities that have been installed
for MICAS-X. These typically include the Configuration Editor, Data Reader, Log Reader,
and the TDMS File Reader, though other utilities may also be present. All utilities may be
run either inside MICAS-X (as when they are selected from this menu) or in the Utilities
tab or independently, either in source code inside LabVIEW or as executables.

9.1.5 Help Menu

Within this menu, the Open User Manual item opens the pdf copy of the MICAS-
X User Manual, if it is installed in the correct location. The Open Web Page item opens
the MICAS-X web page in the computer’s default browser. The Help item provides
information on links on where to find help for the MICAS-X program.

Note that in addition to the resources mentioned on the Help window, MICAS-X
provides context-sensitive help in many places. Context-sensitive help is a LabVIEW
feature that is accessed by pressing CTRL-H to open the Context-sensitive help window.
Once this floating window is open, position the mouse over a control or indicator in
MICAS-X to view a short description of that item. Context-sensitive help is most useful
in the Configuration Editor, since it provides brief explanations of how each parameter
functions. Within MICAS-X itself, the context-sensitive help is frequently less useful,
since the user interface of MICAS-X is, by its design, very general. A control or switch
can be configured to work with any Controller channel, so the context-sensitive help for
that control or switch cannot be specific to any particular channel or its function. The
Context Help Window item in the Help menu functions similarly to pressing CTRL-H, and
will open or close the context-sensitive help window.

Use the Send Feedback menu item to send information about your experience
with MICAS-X to Original Code Consulting. Please enter your name, affiliation, and
contact information, especially if you would like a reply from OCC. Note that this
function requires that the computer running MICAS-X have a connection to the internet.
After pressing the Send button, MICAS-X will attempt to send the feedback to OCC, and

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 141

will then tell you whether the information was sent successfully or not. If a reply is
requested, OCC will try to respond to feedback within 48 hours. If you do not hear from
OCC within that time, please send your feedback or a follow up message directly to OCC
at support@originalcode.com.

The Send Bug Report menu item is similar to the Send Feedback described
above, and like the Send Feedback function, this feature only works if the computer
running MICAS-X has an active internet connection. In addition to including information
submitted by the end-user, the Bug Report also allows the user to have the program
automatically include a copy of the Configuration File and the last 20 entries of the Log
file. Both these additional sources of information can be invaluable for determining the
cause or fix for a bug or problem. OCC will try to respond to every bug report within 48
hours. If you do not hear back from OCC after successfully sending a bug report, pleace
contact OCC directly at support@originalcode.com.

The Check for Updates item contacts the OCC servers to determine the version
number of the most recent MICAS-X release. This feature also only works if the
computer has an active internet connection. The About item provides information on
the version of MICAS-X being run as well as on the security device that is currently
detected.

9.2 Buttons

Below the file menu, there are up to twelve configurable buttons, eight in a row
across the top, and four more immediately below them on the right half of the screen.
The second row of four buttons is useful if only a limited number of tabs is configured, as
these buttons appear horizontally in line with the tabs. If any Alarms are configured, the
Alarm indicator appears in place of the right-most of these buttons, so the eighth button
in the top row should not be configured for use. The labels and functions of these
buttons is determined in the configuration file and can be customized for each specific
application. Below are some common examples of how the buttons may be configured.

⚫ Acquire – Begins data collection.

⚫ Record – When Record is True, any .csv files defined in the configuration file will
be recorded whenever data is being acquired. Note that the background .tdms
master data file is being recorded whenever Acquire is True, regardless of the
state of the Record button.

⚫ Restart – Restarts the the program, loading any changes that have been made to

the configuration file.

mailto:dthomson@originalcode.com
mailto:support@originalcode.com
mailto:support@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 142

⚫ Exit – Quits MICAS-X.

 If any Alarms have been defined in the configuration file, the Alarm Status is
displayed where the 8th button normally would appear. The Alarm Status is either green
(OK), yellow (Warning), or red (Alarm), depending on the highest state of any of the
defined Alarms. E.g. if any one (or more) Alarm is in the Warning state but all others are
in the OK state, the Alarm Status will be yellow. If any one (or more) Alarm is in the
Alarm state, the Alarm Status will be red. The Alarm Status indicator gives the operator
one place to look that is always visible, regardless of what tab is being displayed in
MICAS-X, to see if any Alarms have been triggered. If the Alarm Status is not green, the
operator can clock on the Control tab to view more detailed Alarm information, or on
the MICAS-X tab to review the log of Alarms.

 To the right of up to eight buttons, there is an indicator that displays the current
date and time.

9.3 Tabs

Below the file menu and buttons, there are a number of tabs. More tabs than the
following may be present, depending on the configuration being used. Up to 18 tabs
may be used at once. Often included are the following:

⚫ Control

⚫ Displays (Up to 14 Displays can be configured to load in these tabs.)

⚫ Utility (The Utility tab will not be visible until the first Utility is started.)

⚫ MICAS-X

⚫ Debug (The Debug tab will not be visible until the Debug mode is enabled.)

Each tab and its functionality are described below.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 143

9.3.1 Control Tab

The Control tab is the first (leftmost) tab. Note that this tab can be given a
different name than “Control” by editing the “Control Tab Name” parameter in the
Control Tab editing window.

This tab displays a list of Channels and their current values on the right. (The

selection of channels that are shown here can be configured. See Channel Lists, in the
Modules section of the Configuration Editor help.) The bottom of the tab can display an
optional graph, which can display time series of any two Channels of data. If additional
Channel Lists have been defined (besides the default “All” list), a two list selections will
be visible above the channel table and the graph. These controls can be used to select
which list of channels is shown on the data table and which list of channels are available
for the graph.

Above the graph (and continuing down into where the graph is displayed if the
graph is disabled) are displayed numerous controls. These include Controllers (user-
settable output channels), Switches (Controllers that toggle between two discreet
values, such as digital outputs), Sequences, and Triggers.

If enabled, a Log Message text box will appear in the lower right of the Control
tab, under the Channel values list. This allows the operator to log notes specific to the
circumstances while the program is running, similar to the “Log a Message” menu item
in the Program menu.

9.3.2 Display Tab(s)

To the right of the Control tab are up to 14 Display tabs. Displays can be
configured to populate any number of these tabs. Displays can also be configured to
open up as additional windows outside of the main MICAS-X program.

9.3.3 Utility Tab

The Utility tab is to the right of the Display tabs. Only one Utility can be invoked
at a time. Start Utilities by selecting them from the Utility menu. Selecting a new Utility
will close any Utility that is already open.

9.3.4 MICAS-X Tab

The MICAS-X tab follows the Utility tab (though the Utilities tab is not always
visible). This tab provides a summary/status view of the MICAS-X program. It displays
the current configuration file, the names of any data files being written, a list of log file
entries (errors and events), a list of all data channels, the status of the hardware security

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 144

device, and the MICAS-X serial number and version. It also provides controls that allow
any Sequence to be started or stopped, any Controller to be set to a new value, any
Command to be executed, or a custom message to be sent to the log file. Each of these
last functions has a small check-box labeled “A-Z” next to them. When this box is
checked, the drop-down list of Commands, Sequences, or Channels will be alphabetized
rather than appearing in the order defined by the MICAS-X configuration file.

9.3.5 Debug Tab

The Debug tab appears on the far right when MICAS-X is in debug mode. This tab
does not normally appear and is not needed for normal MICAS-X operation. This tab is
useful for debugging MICAS-X when it is being run inside LabVIEW as source code. To
enter debug mode and make the Debug tab appear, click on the small black square in
the upper right corner of the MICAS-X tab.

9.4 A Note on MICAS-X Window Size

Note that the MICAS-X program has many controls and indicators that are very
carefully placed on the front panel, so that they can be made visible and invisible as
required by the configuration. Because of the dynamic nature of this layout, the MICAS-
X.vi window cannot be resized or maximized. MICAS-X is set to not allow resizing or
maximizing for this reason. Disabling these settings is not recommended. One
exception to this rule is that Displays can be configured to open in their own window.
This allows for Displays to be designed with any window size. However, if a Display is
designed with a window size other than that defined for operation within MICAS-X, it
should always be configured to open in an external window and never configured to
open in a MICAS-X tab.

9.5 Time Series Graphs

 Time series graphs of Housekeeping channels appear in several places in MICAS-
X, including (optionally) at the bottom of the Control tab. All time-series graphs in
MICAS-X have several common properties. In particular, MICAS-X uses a sophisticated
buffering mechanism to provide a useful length of history data without the overhead of
buffering all housekeeping channels in memory at once. Whenever MICAS-X is Acquiring
data (regardless of whether or not it is set to Record data), the data acquired is stored in
a special database-like file, using the .tdms file format. Furthermore, each graph has its
own buffer of acquired data for the channels currently being displayed. If the operator
changes any of the channels being displayed on the graph, MICAS-X reads the history for
the newly-selected channel from the .tdms file(s). In this way, only the channels being

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 145

displayed are buffered continuously in memory. At the same time, access of the .tdms
file is minimized to reduce performance degredation related to parsing large data files.

 Every three hours, a new .tdms file will automatically be started. This three hour
limit is imposed to keep each .tdms file from growing too large, which would impact
performance when reading history data from it. In the MICAS section of the
configuration, there is a parameter that determines whether 1 or 2 .tdms files are read
when a new channel is selected to graph. If this is set to “Only read 1 file of History
data”, then when a new channel is chosen for a time series graph, at most 3 hours of
data will be available. If a new .tdms file has been started recently, the amount of
history data could be much less. By setting this parameter to “Read 2 files of History
data”, the time-series graphs will be guaranteed to have between 3 and 6 hours of
history data (except for the first three hours of run time, when less than 3 hours of
history data has been accumulated.)

 If a large number of housekeeping channels are configured in MICAS-X, it may be
advisable to set the above parameter to “Only read 1 file of History data”, since reading
history data from two large files could affect system performance.

 If the operator does not change the channels being graphed on a time series
graph, the history can accumulate much longer than the 3 or 6 hour limit. In this case,
the maximum history depth is determined by the “Max History Depth” parameter on the
MICAS configuration page. This parameter is set in “number of points”, not seconds, so
that actual history time depends on both this parameter value and the acquisition rate
of the housekeeping data.

 Another feature of time-series graphs in MICAS-X is a global per-channel memory
of manual Y axis limits. Each time a graph channel is set to use a Manual Y scale, the
selected Y axis limits are stored in a buffer. Whenever a new channel is selected for
display with a manual Y axis limit, the buffer is scanned. If that channel is found in the
buffer, the manual limits for that channel are automatically restored. Note that the
buffer of channel limits is limited to between 90 and 100 channels. When more than
100 channel limits are stored in the buffer, the oldest 10 channels are removed from the
buffer. This self-cleaning mechanism prevents the buffer from growing unbounded over
long term use and thus degrading performance. Note that the manual channel limits
buffer is used for the time-series graph on the Control tab and for the time-series graphs
in the 3Graphs Display. It may be added to other graphs and Displays in the future, but it
is generally not used for graphs that allow multiple channels on an axis.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 146

9.6 Modules and Features

As described in the “MICAS-X Components” section of the manual, Modules are
sets of functionality that are built into MICAS-X. Modules are not deployed as plug-ins,
so new modules are only available when a new version of MICAS-X is released. Most
modules have their own configuration editor. Modules currently available in MICAS-X
include, but are not limited to:

9.6.1 Acquisition

 The Acquisition module coordinates acquiring data from the Drivers. This
module has one primary loop rate, but can include any number of additional acquisition
loops. The various acquisition loops run in parallel and each acquires data from the
Drivers assigned to it at its own rate, unsynchronized from the others. MICAS-X has a
single buffer of all Housekeeping Channels (Input channels and Controller or Output
channels) which each acquisition loop updates whenever new data is read. By using this
single buffer, any part of MICAS-X can access the most current values of any channel. In
addition, the primary Acquisition loop writes the contents of this buffer to the master
.tdms database file on each iteration.
 Typically, the primary Acquisition loop will run at 1 Hz, providing 1 second data
from all the Drivers. There are several reasons why additional acquisition loops may be
desired. One example of this is a situation where one Driver is acquiring 1 Hz data from
a National Instruments data acquisition card, while another Driver is acquiring 1 Hz data
that is being sent by an external computer or instrument at a rate determined by the
external device. Although both Drivers are operating at a nominal rate of 1 Hz, they are
using two different clocks. Eventually, one of these clocks will lag the other to the extent
that one instrument will not have data available on within the time limit of the loop, and
an error will occur. By assigning these Drivers to separate loops in MICAS-X, the error
condition will be avoided. The primary Acquisition loop will record the most recent data
values for each Driver. Eventually, the Drivers will become out of sync such that the
primary Acquisition loop will record the same value for one of the Drivers on two
consecutive iterations, or possibly the primary Acquisition loop will miss one value of
one Driver if the second loop’s clock is faster than the primary Acquisition loop’s clock.
This type of stuttering is unavoidable when using devices with different clocks, but by
using separate acquisition loops, no error condition is generated. Also note that when a
Driver reports its channels, it prepends all the channel data with a time stamp channel
indicating when that data was taken. Stuttering of the type described above can
therefore be detected by analyzing the Driver time stamps.
 Another example of when multiple acquisition loops can be useful is when one
Driver may be acquiring 1 Hz data from a digitizer or multi-function card, while another
Driver needs to acquire data from an external instrument that sends data at a higher or
lower rate. E.g.: if an external instrument sends data at 5 Hz, and cannot be configured

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 147

to run at 1 Hz, then two acquisition loops can be configured in MICAS-X so that one runs
at 1 Hz, and the second runs at 5 Hz. The primary Acquisition loop will gather data from
all the Drivers at its own rate, typically 1 Hz.
 Finally, separate acquisition loops are often required when some devices impose
their own timing on the data. For a simple A/D voltage read from an NI device once a
second, MICAS-X can determine when to ask for the data. However, for a streaming
device such as a GPS, which sends data once a second based on its own clock, it is
important to have a separate loop that is “Device Timed”, so that the acquisition rate of
that loop is tied to the rate at which the device makes data available. For more

information on Device Timed acquisition loops, refer to the Channels configuration
section.

9.6.2 Channel Lists

 Channel Lists are defined in the configuration. A list named “All” is always
present and includes all the Housekeeping channels present in the configuration. As
many additional Channel Lists can be created as the operator has use for.

 Channel Lists are a feature of MICAS-X that have several purposes. Channel Lists
can be used to define which Channels appear in conjunction with various front panel
display objects. Channel Lists can also be used to define which channels are written to
data files, or which channels are broadcast to another system. By creating custom lists
of channels, it is possible to provide a much more intuitive and navigable user interface,
especially when the total number of Channels defined in MICAS-X begins to get large.
When dozens or even hundreds of channels are present, selecting which channel to
graph on a time-series graph from a list of all channels can be tedious and frustrating.
Channel Lists provide a way to filter the channels so that only those relevant to a
particular use case are present where they are needed.

9.6.3 File Writer

Whenever MICAS-X is acquiring data, it writes the complete set of channels to a
database-like .tdms file. This file is used as a fail-safe data archive as well as to provide
history data for time-series graphs. This file is written by the main Acquisition Loop
(loop 0). In addition to this data file, the File Writer module can be configured to create
any number of text data files. Each data file can be configured to write a specific list of
channels. In addition, other configuration parameters can be set that determine how
the data file is formatted. Each file defined in the File Writer is assigned to an
Acquisition Loop. Whenever the assigned loop acquires data from its drivers, it then
also gathers the most current data from all the Drivers and writes any files that are
assigned to it.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 148

Note that the ability to assign each file to a different acquisition loop can be used

to significant advantage when there are Drivers that acquire data at different rates. As
an example, assume that most drivers acquire data at 1 Hz, and that Loop 0 of the
Acquisition Task is writing not only the .tdms file at 1 Hz, but also writing one or more
text files at 1 Hz. Also assume that one particular device sends data at 10 Hz, and is set
to be acquired using Loop 1. Only one of every 10 samples of this driver’s data will be
recorded in the .tdms file and in any text files written by Loop 0. However, a Channel List
can be defined that includes just this Driver’s channels (or possibly other channels as
well), and assigned to a file definition that is associated with Loop 1. In this case, a text
file will be written that includes the selected channels, and it will write all 10 samples
per second, so that no data from the fast device is lost.

The opposite case, creating data files with fewer entries than a loop time, can be

handled with the Write Frequency (Once Every n Loops) parameter. E.g. a sparse data
file with data written once a minute can be defined by associating it with an Acquisition
Loop which runs once a second, and setting the Write Frequency to 60.

 The “All” channel list is always present in MICAS-X. The first channel in this list is
named “–” and always has a value of “NaN”. This channel is used in several ways in
MICAS-X. One example is that when selected as a graph channel, it prevents the graph
from plotting any data for that channel, which can be an easy way to use a two-plot
graph to only show one plot. Note that when the “All” channel is written to a user-
defined file, the “–” channel is not included in the channels written to the file.

 In order to preserve sub-second information in time-stamps, the File Writer
automatically uses a specific formatting when writing data that appears to be time-

stamp data to a data file. Refer to section 7.4.4 for more information.

9.6.4 Sequences

 Sequences provide a powerful way to extend the functionality of the MICAS-X
system. Sequences can be defined that can automate many processes. Sequences can
loop and execute conditionally, and can act on any Controller (output) channel, based on
the value of any channel. Sequences can use the many built-in MICAS-X Commands, as
well as any Commands that are programmed into any of the Drivers. Sequences can be
tied to various buttons in the MICAS-X interface, to Triggers or Alarms, and can be
started via commands sent by another system.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 149

 Since Sequences have no “Hysteresis” parameter, the In-Range and Out-of-Range
comparisons that are described in the Triggers section below are not available for

Sequence conditions. For information on the “NaN” conditions, see section 7.4.8.

 The Sequence Module can be used with or without the Sequences Driver. The
Sequences Driver should only be used when the Sequences Module is used. The
Sequences Driver adds additional functionality to the Sequences Module. When the
Sequences Driver is included, new channels are created that are logged to the main data
file. These channels are named “SeqStep” plus the name of each Sequence. These
Controller (output) channels that can be used to start and stop Sequences. In addition,
as a Sequence runs, the value of its SeqStep channel is updated with the step number
that the Sequence is currently on.

 The StartSeq command can be used to start a Sequence. Normally, the Value
parameter is set to 0, so that the Sequence starts at the beginning (step 0), but it is
possible to use a non-zero value to start the Sequence at any step. The StopSeq
command is used to stop a Sequence that is running. You can also use the “Set”
command with one of the SeqStep channels to start and stop Sequences. Using the
value of 0 with the Set command and a SeqStep channel will start that Sequence at its
beginning (step 0). Using a positive integer value will start the Sequence at a step part
way through the Sequence. Using the value “NaN” will stop the Sequence. Using the
negative value of the current Sequence step will Pause the Sequence at its current step.
(Any negative number will pause the sequence, after which the SeqStep channel will
automatically take on the value of the negative of the step at which is was paused. E.g.
you cannot force the Sequence to pause at a different step then the one it was
executing.) The PauseSeq and UnpauseSeq commands can also be used with a
Sequence name to pause and unpause a Sequence.

 Each Sequence can have an Exit Step defined. If this option is enabled, the Exit
Step (which has the same form as any other Sequence Step) will be executed
automatically whenever an action external to that Sequence causes the Sequence to
stop. For example, if another Sequence, a Trigger, or a button issues a StopSeq
command, the Sequence that is stopped will execute its Exit Step. If, however, the
Sequence runs to completion and stops itself, the Exit Step is not automatically
executed.

 The Exit Step can be used to clean up the action of a complex Sequence which
may be stopped at any point, and which would otherwise leave the system in an
unknown state. Often, the clean-up procedure will involve many steps. In this case, the
Exit Step will need to be a StartSeq command which will call another multi-step
Sequence to complete the clean-up.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 150

 It may be desirable to execute the Exit Step even when the Sequence runs to
completion. In this case, you can either duplicate the Exit Step at the end of the
Sequence, or call the “ExitStep” Command, which will then execute the Exit Step as if it
were a regular step of the Sequence.

 The Sequence Module can be used with or without the Sequence Display. The
Sequence Display provides a tab in MICAS-X that displays all the Sequences and their
current state, and allows the user to turn them on and off.

9.6.5 Sequence Sets

 Sequence Sets can be useful in configurations which contain a large number of
Sequences. By defining various Sets, the Sequences viewed with the Sequences Display
and the XRT Sequences Display can be filtered, providing a much clearer view of what
the Sequenes are doing. In addition, the StopSeqSet Command can be used to stop all
the Sequences in a specific Set at once. This functionality can be useful when an error,
trigger, or alarm requires that the system be set to a known state, regardless of which of

several different Sequences may be running at the time. See section 7.4.7 for additional
information on Sequence Sets.

9.6.6 Triggers and Alarms

 Triggers are actions that can be defined to occur based on the value of any
Channel. Various programmable conditions can be used to determine when a Channel
value causes a Trigger to be True. Once a Trigger becomes True, it can execute any of the
MICAS-X Commands, including any custom commands defined in Drivers. An Alarm is a
special case of a Trigger. Any Trigger can be configured to be an Alarm. Alarms are given
special consideration on the MICAS-X user interface, so as to alert the operator
whenever an Alarm becomes True, whereas Triggers can be used to provide functionality
which might not be considered an Alarm condition.

The Triggers Module can be used with or without the Triggers Driver. However,
the Triggers Driver should only be used when the Triggers Module is used. The Triggers
Driver adds additional functionality to the Triggers Module. When the Triggers Driver is
included, new channels are created that are logged to the main data file. These include
a channel for each Trigger (using the Trigger Name as the channel name) which logs the
state of the Trigger (0 = False, 1 = Warning, 2 = True, 3 = Alarm), and a Controller
(output) channel for each Trigger that allows the Trigger Threshold to be set. These are
named using “TrigThr “ prepended to the Trigger Name.

 Changing Trigger Thresholds while MICAS-X is running can be used to disable
Triggers (e.g. set the threshold to Inf, so that > is never attained), or to fine-tune the

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 151

Trigger’s behavior. There are two ways to set Trigger Thresholds: using the SetTrigger
command, or by using the “Set” command with the Triggers Driver channel. (The
second is only available, of course, if the Triggers Driver is included in the MICAS-X
configuration.) Note that the SetTrigger command can accept either the Trigger Name
itself, or the Trigger Name prepended with “TrigThr “, e.g. the Trigger Threshold
Controller channel.

 Triggers are only active when data is being acquired. When the program is not
Acquiring data, the Alarm Status and the Triggers display on the Control tab are grayed-
out.

 Note that for the conditions = and <> (not equals), the Hysteresis parameter can
be used to allow for “In Range” (for =) and “Not In Range” (for <>) comparisons. For =, a
Hysteresis of 0 will enforce a strict = condition, whereas a positive, non-zero Hysteresis
will create a “In Range” condition. E.g. if the Threshold is 10 and the Hysteresis is 2, the
= condition will cause the Trigger to be True whenever the channel value is between 8
and 12. For <>, a Hysteresis of 0 will enforce a strict not-equal condition, whereas a
positive, non-zero Hysteresis will create an “Not In Range” condition. E.g. if the
threshold is 10 and the Hysteresis is 2, the <> comparison will be True whenever the
channel value is < 8 or > 12.

 Three special conditions are included for dealing with NaN, or Not-a-Number.

See section 7.4.8 for more information.

 When viewing Triggers on the main MICAS-X Control tab, hover over one of the
Triggers to see additional information on that Trigger’s status, which will appear on top
of the Channels list. The Channels list will reappear when you move the mouse off of the
Triggers display.

9.6.7 Drivers

Drivers are at the heart of MICAS-X. A Driver obtains data from input channels
and set the data values of output channels. Drivers are intended to operate on relatively
slow data. 1 Hz “housekeeping” or instrument health data is typical, although Drivers
can operate as fast as 20 or 25 Hz or much slower than 1 Hz. The channels from all the
Drivers in MICAS-X are combined into an array of data this displayed and saved. Many of
the functions of MICAS-X act on this data. Sequences can set output channels. Triggers
and Alarms initiate action when a channel’s data value matches some criteria. Although
instruments provide a way to integrate complex hardware and data into MICAS-X, many
systems can be implemented with just the data from Drivers.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 152

If a Driver is written correctly, it can be multiply instantiated within MICAS-X.
This means that the same Driver source code can be called multiple times within MICAS-
X, with each instance working with a different instance of hardware and creating a
separate set of channels. The Prefix parameter, which can be set for each Driver, is a
requirement when multiple copies of the same Driver are used within a configuration.
The Prefix assigned to each instance allows MICAS-X to differentiate the instances and
manage them properly. In addition, the Prefix is prepended to the channel names, so
that each Driver instance has uniquely named channels.

 Drivers that are currently available for MICAS-X are listed below. Note that some
of these Drivers are included with the MICAS-X base package, while others incur an
additional charge.

⚫ 2D Array – The 2D Array Driver allows one to create a two-dimensional array of
numeric values. These values can be read and written to programmatically
throughout the MICAS-X program, similarly to Array. This driver can be multiply
instantiated. (additional charge)

⚫ Agilis – This driver controls Agilis motorized mirror mounts. This Driver can be

multiply-instantiated. (additional charge)

⚫ Airmar – This Driver can interface to the Airmar 200WX weather station, to
acquire GPS, magnetic heading, winds, and meteorological data. This Driver can
be multiply-instantiated. (additional charge)

⚫ Alicat – The Alicat Driver can interface to multiple Alicat Flow Controllers and can

be used to set the flow setpoint and read back the flow (in volume and mass
flow) and the pressure and temperature. This Driver can be multiply-
instantiated. (additional charge)

⚫ Aries Drive – This Driver controls one axis of motion using an Aries IPA controller
from Parker Hannefin. This Driver includes several commands, which are

documented in Appendix B: Commands. This Driver can be multiply-
instantiated. (additional charge)

⚫ Array – This Driver allows one to create a one dimensional array of values, which

can then be read and written to programmatically throughout the MICAS-X
program. Such an array could be used to direct a sequence to scan a process
variable through a set of values that can not easily be written as an equation,
such as a 1,2,5,10-type sequence. This Driver can be multiply-instantiated.
(included in base package)

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 153

⚫ Averager – This Driver averages the values of other, exisiting channels over a

user-specified number of acquisitions. This Driver can be multiply-instantiated.
(included in base package)

⚫ Calculations – Each instance of this Driver can call a Calculation VI. A Calculation

VI must adhere to the design specifications defined for MICAS-X in order to work
in MICAS-X with the Calculations Driver. Such a VI can execute much more
complicated algorithms than the scripted “Equations” Driver can handle. In
general, a Calculations VI takes a number of channels as input and creates 1 or
more channels of output data. A Calculations VI can be singly or multiply
instantiable – e.g. if it is designed properly, a single Calculations VI can be
instantiated multiple times within MICAS-X so that the same calculation can be
performed on numerous sets of input channels. Likewise, the Calculations Driver
can be multiply instantiated within MICAS-X. (included in base package)

⚫ CANBus – This Driver allows communication to devices using the industrial

CANBus protocol. This Driver can be multiply-instantiated. (additional charge)

⚫ Controllers – This Driver creates control loops by taking an existing input channel
as the process variable, an existing output channel as the control channel, and
creating a new channel for the Set Point. Simple Controllers, PID loops, and
Thermostatic Controllers are available options. In addition to those control
loops, this Driver can also create new channels that scale an existing volume flow
to a new mass flow channel, or an existing mass flow channel to a volume flow.
Finally, this Driver allows the creation of “Follower” channels that output a
voltage that is proportional to the value of any other existing channel. Follower
channels can be used to send a channel value to another data system or program
by encoding it as a voltage. (additional charge)

⚫ Document – The Document Driver is only used in conjunction with the Document

Display. It creates the channels “Document Number” and “Section Number”
which allow MICAS-X commands to control the display of the information in the
Document Display. (included in base package)

⚫ Equations – This Driver executes a script-like equation on existing channel names,
which result in a new channel of data. Multiple Equations can be configured
within one Equations Driver, and the Equations Driver can be instantiated
multiple times within the MICAS-X system. (included in base package)

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 154

⚫ Expressions – This driver is very similar to the Equations driver, but is many times
faster and includes many more functions. It can be multiply-instantiated.
(additional charge).

⚫ ESP7000 – This Driver controls the Newport ESP-7000 series motion control

systems. (additional charge)

⚫ Manual – The Manual Driver allows one to create manual data channels. These
are Controllers (output channels, e.g. channels that can be set) that are generally
used to allow the operator to enter values directly from the user interface.
These values are then recorded, and hence can be used to annotate an
experiment with manually entered parameters, or they can be used as inputs to
calculations or sequences, allowing the operator to tailor the operation of the
program by altering these values. (included in base package)

⚫ MCCDaqAD – This Driver acquires analog input data from a wide range of
Measurement Computing multifunction devices. (additional charge)

⚫ MCCDaqDA – This Driver writes to analog output channels for a wide range of
Measurement Computing multifunction devices. (additional charge)

⚫ MCCDataDI – This Driver acquires digital input data from a wide range of
Measurement Computing multifunction devices. (additional charge)

⚫ MCCDataDO – This Driver writes to digital output channels for a wide range of
Measurement Computing multifunction devices. (additional charge)

⚫ MCCDataTC – This Driver acquires temperature data from Measurement
Computing thermocouple devices. (additional charge)

⚫ MICAS-XRT – This Driver acts as an interface between MICAS-X and MICAS-X-RT.
All the channels and commands available on the Real-Time system can be
accessed on the Windows MICAS-X when this Driver is included in the
configuration. (additional charge)

⚫ MICM – This driver implements the Instrument Communication Module(ICM) in
MICAS-X, allowing a configuration-based mechanism for reading and writing data
from a variety of instruments. This driver is similar to OSDS. This Drive can be
multiply-instantiated. (Included in base package)

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 155

⚫ Modbus – This Driver can be used to interface to a wide range of instruments
which support the Modbus protocol, both over serial or Ethernet. (additional
charge)

⚫ MOSDS – The OCC Streaming Data System is a shareware library of LabVIEW

routines that allow one to acquire data from a wide variety of devices by simply
editing a configuration file. OSDS supports serial and UDP (Ethernet) data buses,
and includes a wide range of parsing options. MOSDS is a MICAS-X Driver that
incorporates the OSDS system into MICAS-X. The MOSDS Driver can be multiply
instantiated. Note that the OSDS definition file is stored outside of the MICAS-X
configuration file. (included in base package)

⚫ myRIO Daq – This driver is only for MICAS-X-RT and only interfaces to the Daq

signals on the myRIO platform. This driver can be multiply-instantiated.
(additional charge).

⚫ NIDaqAD – This Driver allows one to acquire analog input data from nearly any

National Instruments multi-function device. It can be multiply-instantiated.
(included in base package)

⚫ NIDaqBridge – This Driver acquires signals from bridge-based sensors using
National Instruments devices specifically designed for bridge sensors. Currently
this driver supports force measurements. (additional charge)

⚫ NIDaqCounter – This driver allows acquisition of counter data from National

Instruments multi-function devices. It can be multiply-instantiated. (additional
charge)

⚫ NIDaqDA – This Driver allows one to set output voltages on the analog output
channels of nearly any National Instruments multi-function device. Note that
this MICAS-X Driver is intended for setting slowly changing setpoints, and does
not support any hardware-timed function generation. It can be multiply-
instantiated. (additional charge)

⚫ NIDaqDI – This Driver acquires data from digital inputs on National Instruments

multi-function devices. It can be multiply-instantiated. (additional charge)

⚫ NIDaqDO – This Driver allows MICAS-X to use digital output channels on National
Instruments multi-function devices as Controller channels. It can be multiply-
instantiated. (additional charge)

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 156

⚫ NIDaqRTD – This Driver interfaces with NI Daq devices that can read RTD
temperature sensors. This driver can be multiply-instantiated. (additional charge)

⚫ NIMotion – This Driver interfaces to National Instruments motion control

systems. It can control an arbitrary number of motion axes. It provides input
channels for reading position, velocity, and status. It provides output channels
(Controllers) for setting the target position and velocity, and Commands for
initiating movement, resets, etc. (additional charge)

⚫ Obis Laser – This driver interfaces to Obis lasers from coherent. It can be

multiply-instantiated. (additional charge)

⚫ Omega – The Omega Driver reads one temperature value and sets one
temperature setpoint on an Omega Cni16 temperature controller. Additional
functionality can be added as needed, to handle more functions on the Cni16 or
to work with other Omega products. This Driver can be multiply-instantiated.
(additional charge)

⚫ Picarro G2401 – This driver acquires data from a Picarro G2401 cavity ring down

spectrometer. This driver can be multiply-instantiated. (additional charge)

⚫ PID – The PID Driver creates PID control loops, similar to the controllers driver,
but with more flexibility. It includes multiple gains for gain scheduling, ability to
change gains while the program in running and an auto-tune wizard.

⚫ PrimeScales – This Driver reads the weight from a PS-IN202 industrial scale made

by Prime Scales. Its output is the net weight (tared), either by reading the net
weight from the scale or by reading the gross weight from the scale and using a
tare weight from its configuration. It can be multiply-instantiated. (additional
charge)

⚫ PWM – This Driver uses an existing channel to define the duty cycle to turn on
and off an existing digital output channel. This driver can be multiply-
instantiated. (additional charge)

⚫ RIO Scan Engine – This Driver is only for use in MICAS-X-RT, and allows easy,

program-free access to any channels that are supported by the Scan Engine.
(additional charge)

⚫ Sequences – This Driver adds additional support to the Sequences module of

MICAS-X. Sequences can be used without the Sequences Driver. However, if the

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 157

Driver is included, two new channels are created for each Sequence that is
defined. One of these channels records the step number that the Sequence is
on. The second acts as a Controller channel that can be used to turn the
Sequence on or off. (included in base package)

⚫ System – The System Driver allows one to monitor the CPU and RAM usage,

AC/Battery status, hard disk free space, and dozens of other computer resources.
It also includes an optional timestamp channel that calculates time as seconds
since January 1 of the current year. (additional charge)

⚫ System-XRT: Similar to the System Driver for windows, but specific to RT

platforms. (additional charge)

⚫ Timers – This Driver can be used to create an arbitrary set of Timer channels.
These channels use the computer clock as their time basis (software timing), and
are useful for timing things from seconds to hours or more. They have sub-
second resolution, but MICAS-X is not designed to respond to Channels with
better than about 0.1 second accuracy. Timers can be reset, disabled, and
paused. In addition to the user defined timers, this Driver also creates three
program timers, which track the total time MICAS-X has been running, acquiring
data, and recording data. (included in base package)

⚫ Triggers – This Driver adds additional support to the Triggers module of MICAS-X.

Triggers can be used without the Triggers Driver. However, if the Driver is
included, two new channels are created for each Trigger that is defined. One of
these channels records the state of the Trigger. The second acts as a Controller
channel that can be used to set the Trigger threshold. (included in base package)

⚫ Vaisala HI70 – This Driver reads three channels of data from the Vaisala HI70

humidity sensor. (additional charge)

⚫ Vaisala HMT310 – This Driver reads 11 channels from the high-precision Vaisala
HMT310 humidity sensor via the serial port. It can be multiply-instantiated.
(additional charge)

⚫ Watlow – This Driver writes a temperature setpoint to, and reads a process
temperature from, a Watlow EZZone temperature controller. (additional charge)

⚫ Web Power Switch – This Driver controls a Web Power Switch 7 internet-enabled

AC power strip. By configuring a script on the Web Power Switch 7 (see

Appendix F: Web Power Switch 7 Watchdog Function), MICAS-X can also

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 158

use this device as a Watchdog, such that if MICAS-X or the computer on which is
running crashes, one or more outlets of the Web Power Switch 7 will be
automatically turned off. This Driver can be multiply-instantiated. (additional
charge)

9.6.8 Instruments

 Instruments are MICAS-X modules that are intended for interfacing to more
complex hardware, instruments, timing, and data types than Drivers allow for. These
instruments may deal with data that does not fit the Drivers format (which is a 1-
dimensional array of double-precision reals), or may involve data that has a much
different time-scale, timing, triggering, or synchronization requirements than the Drivers
can accommodate. A Display (see below) is an optional feature of an Instrument.
 Currently, no Instruments ship with the base package of MICAS-X, and no
Instruments have been created that are supported by MICAS-X-RT. Existing Instruments
available for MICAS-X at an additional charge currently include:

⚫ Broadcast – This MICAS-X component provides a way for the operator to
configure an arbitrary number of broadcast, or telemetry, data streams that
MICAS-X can use to send data to other computer systems. It supports serial
ports and UDP Ethernet communication. This instrument can be multiply-
instantiated. It also allows the user to configure up to 10 channels to send to
Shared Variables that can be read by the Data Dashboard application for Android
or iOS devices.

⚫ Command – Enables MICAS-X to listen for valid commands over a serial or UDP

port, so that other programs can control and interact with MICAS-X. Includes the
“MICAS-X Command Interface” Utility program for remote program control.

⚫ Email – Allows Alerts to be sent to any number of email addresses. Also allows

the user to manually send short email messages to the addresses configured.
Note that this Instrument has been tested to work with some email servers, but
the configuration options for authentication are limited, so not all email servers
are guaranteed to work. Also note that all emails sent by this Instrument have
the same Subject line (as specified in the configuration file) and are all sent to
the same list of recipients. In addition to configuring an Alert to send an email

(see the notes in Section 14), if the Instrument is configured to 158xecu in
MICAS-X as a Display, one can also send short emails directly from that display by
typing text into the Message box and pressing the Send button. Be sure to read

the section on configuring the Email Instrument (in Section 7.5) for caveats that
must be kept in mind when using this functionality.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 159

⚫ Ocean Optics – This Instrument allows the acquisition of optical spectra, with

averaging and file writing, from an Ocean Optics USB spectrometer.

⚫ Ramp – Can be used to create linear and logarithmic Ramps of the value of one
channel over time. This module can create Ramps with a much finer time
resolution than could be accomplished with a Sequence. It also provides a
simpler interface than a Sequence would. This Instrument can be configured
such that the Initial and Final Values of the Ramp, the Ramp Time, and the ability
to turn on and off the Ramp can all be controlled by other Channels, or by
manual controls on the Ramp Display.

⚫ RT File Transfer – This Instrument automates the transfer and archiving of data

files created on an embedded RT target by MICAS-X-RT to the Windows host.
After transferring files from the RT target to the host, this instrument can
optionally delete the original files on the RT target to ensure that the target does
not run out of disk space.

⚫ SMPS Ramp – This Instrument includes the same functionality as the Ramp

Instrument, but extends it so as to acquire particle count data while the ramp is
scanning. This allows the acquisition of data from a scanning DMA (Differential
Mobility Analyzer). When the ramp is complete, the full particle spectrum is
calculated and the relevant data is written to a text file. The path and name of
the text file is displayed on the Instrument front panel.

⚫ WebCam – This Instrument allows for one to display the image from a USB

WebCam or a WebCam built into a laptop.

⚫ Web Interface – This Instrument publishes data via the Skyline API, allowing it to

be used on a custom web page written with LabVIEW NXG.

⚫ Web Page – This Instrument displays a web page in an embedded browser.

Customization can allow for additional functionality such as ingesting information
from the web page into MICAS-X.

9.6.9 Displays

 Displays are MICAS-X modules that can be instantiated inside a MICAS-X tab or as
a separate window. A display can have nearly any functionality, but the primary purpose
is to provide additional user interface elements for data or controls that are part of the
MICAS-X system, e.g. that originate in a Driver, or that come from an Instrument. Each

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 160

Instrument can have a Display module that presents the Instrument to the operator, but
the generic Display is not tied to a specific instrument. Displays currently included in
MICAS-X are:

⚫ 3Graphs – This display contains three time-series graphs, each with a data
channel graphed on the left axis and another graphed on the right axis.
(included in base package)

⚫ Big Display – This display allows for the user to specify a handful of important

channels that will be displayed in a large font size. It is intended to provide a
view of select items that can be more easily seen from a distance, e.g. from
across a room. This display is designed to be used outside of the MICAS-X tabs,
as a separate window. (included in base package)

⚫ Document Display – The Document Display is used to present instructions and

documentation to the operator. It can be controlled by the MICAS-X program, so
that instructions relevant to the current process are automatically presented.

See section 7.8.3 for more information. (included in base package)

⚫ Indicators Display – The Indicators Display can show up to 32 channel indicators.
Each channel can be configured to be displayed as a gauge, bar, numeric, or an
LED. (additional charge).

⚫ Map – This Display uses map tiles downloaded ahead of time to display color-

coded Channel data on a zoomable map. This functionality can be indispensable
for a mobile lab that does not have internet access. (additional charge)

⚫ Multi Display – Each instance of this Display allows the creation of up to six views

that the operator can quickly select from. Each view contains two time-series
graphs with up to 8 and 4 channels each, four buttons along the top which can
be programmed with any command, and five options along the left side. Each
option can be configured as a Command, control channel, indicator channel, or
Sequence. (additional charge)

⚫ Sequences Display – Sequences can be used with or without this Display, since

Sequences can also be turned on and off via buttons on the Control tab and
through other mechanisms. This Display presents a table that displays all the
Sequences defined. This table provides a more detailed view of the Sequences
than is available elsewhere, and includes the current step and the timer value for
any Wait command that is being executed. Sequences can also be started and
stopped from this Display. Finally, hovering the mouse over any step in a

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 161

Sequence displays the detailed parameters for that step. (included in base
package)

⚫ XRT Sequences Display – This Display is similar to the regular Sequences Display,

except that it is used on a Windows version of MICAS-X to view and control
Sequences that are running on an embedded RT target using MICAS-X-RT.
(additional charge)

⚫ XYZ Display – This Display creates a plot that uses two channels for the X and Y

points, and a third channel is displayed by color at the coordinates of the first
two channels. This Display is especially useful for geographic display of data, as
Longitude and Latitude can be used for X and Y and any measured channel can
be used as the color-coded Z channel. In addition, an optional Marker (black X)
can be placed anywhere on the graph as a reference point. Note that for version
1.4.2 and later, the XYZ Display includes automatic data reduction. This
algorithm ensures that a maximum of 2000 points will be displayed on the graph
at any time. If a time-span is selected that includes more than 2000 points, the
Display decimates the data, throwing out every other point, or every third point,
or every n point, using whatever value of n is needed to ensure that only up to
2000 points are graphed. The amount of data recduction being used is displayed
in the lower right-hand corner of the Display. This automatic data reduction
ensures that the program performance does not suffer, as it could when
displaying large amounts of data on this graph. (additional charge)

9.6.10 Calculations

 Calculations are VI’s that are used with the Calculations Driver to provide
calculated data channels based on other existing data channels. The Calculation VI’s
must adhere to the defined API exactly. It is also important to ensure that the resulting
calculations can execute within the time allowed by the configuration of the acquisition
loop rates. Calculation Vis can include sub-Vis. The user must have the correct version of
LabVIEW installed to create new calculations, but the resulting VI’s can be used when
MICAS-X is run inside LabVIEW or as an .exe. MICAS –X currently includes the following
Calculations:

⚫ Demo Calculation serves as a template for the user to create their own
calculations. It sums two input channels to result in a single new output channel.
This Calculation can be multiply-instantiated.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 162

⚫ Channel Averager is a Calculation VI that takes one channel and creates a running
average over the last N samples. N is defined by the value of Global 0. Since
Calculation Vis don’t have their own configuration editor, this example shows
how the Globals can be used as configuration parameters for defining how a
Calculation will work. Also note that this Calculation VI contains its own local
memory, which it uses to hold the previous values used in the running average.
This Calculation can be multiply-instantiated.

⚫ Previous Value is a Calculation VI that returns the value that a specified channel

had on the previous acquisition iteration. This memory allows for logic such as
detecting when a channel has changed value, as well as for measuring the rate of
change of a channel’s value. This Calculation can be multiply-instantiated.

9.6.11 Timers

 The Timers Driver creates three predefined Timers as well as any number of user-
defined Timer Channels. These Timers can be used in Sequences or with Triggers to
create conditions for timing various functions. The Run Time Timer is created
automatically and contains the total elapsed time in seconds since the program started
or restarted. The Acquire Time and Record Time Timers track how long MICAS-X has
been Acquiring and Recording data. These timers cannot be set by the user. They are
Disabled (set to NaN) when the program is not Acquiring or Recording.

 User-defined Timers can be disabled (set to NaN) or paused. The Timer Driver
includes the commands Disable, Pause, and Unpause for these purposes. To re-enable a
Timer, write a new value to it with the Set command. To disable a Timer write the value
“NaN” with the Set command. Timers always count up. Timers can be configured to
start disabled by using the value “NaN” for their initial value. They cannot be configured
to be paused when the program starts.

9.6.12 Constants

 Constants are configurable, nameable channels that have a constant value while
MICAS-X is running, but which can be assigned any value in the configuration file. This
allows for convenience in creating calculations and equations, where Constants can be
referenced just as a channel, but the constants do not appear in the data files or the lists
of channels that can be graphed.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 163

9.6.13 Globals

 Globals are a special kind of Controller, or output, channel available in MICAS-X.
Twenty global channels are available. They are configured in the Globals module
configuration window. If the name of the global is left blank, the global will not be used
within MICAS-X.

 Globals act very similarly to Manual channels, with some additional functionality.
Like a Manual channel, a global can be shown on the Control tab so that the operator
can change its value directly, or its value can be set by a command, sequence, trigger,
and other programmatic methods. The global’s value can be read and used as a
condition in a sequence step or a trigger, and the global’s value can be an input to an
Equation or Calculation. In addition to all these properties, globals provide several
additional functions.

 Within LabVIEW, the global channels are implemented using traditional LabVIEW
global variables. This means that they can be accessed, (read or written to) by any VI in
the MICAS system. Thus custom Instruments, Displays, and Drivers can potentially use
globals to communicate with other parts of MICAS-X. (Note that none of the standard
MICAS-X Drivers, Displays, or Instruments use the globals in this way.) Another MICAS-X
component that can take advantage of this property of Globals are the Calculations.
Calculations are user-created LabVIEW VI’s that can be directly incorporated in MICAS-X
through the Calculations Driver. However, the Calculations Driver has limited
configuration options, with no way to configure parameters specific to any particular
Calculation. Globals provide a way to create configurable parameters for a Calculation.
See the Calculations entry for more information, including how the “Channel Averager”
Calculation uses a global to define the number of points to average.

 The second function that Globals provide, beyond what Manual channels can do,
relates to how Commands are used in MICAS-X. Globals allow for a special set of
Commands that can operate on two channels by referencing one channel by name and
the global by index. See the Commands section for more information.

 A third special function of the Globals is to latch error codes so that they can be
reliably detected. The Error Program State Variable automatically contains the error
code of the most recent error to occur, and it is reset to 0 after each acquisition loop. If
multiple errors occur during one acquisition loop, all but the last one are lost to the
Error channel. The error channel therefore provides a snapshot of whether errors are
occurring, but cannot guarantee that any specific error is identified. To allow specific
error codes to be used in Trigger or Sequence conditions, the Latch Error function of the
Globals can be used. If a specific error code is entered in a Globals Latch Error field, that
Global will be set to that error code whenever the error occurs. The Global will never be

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 164

automatically cleared, so any action (Sequence) that acts on the error will need to
provide its own clearing mechanism if that is needed.

9.6.14 Program State Variables

 Several channels of data are always present in the MICAS-X system, regardless of
which Drivers are included in the configuration. These Program State Variables are
quantities which help indicate how the MICAS-X system is running. The Program State
Variables are handled by Acquisition Loop 0, the default Acquisition Loop. The current
Program State Variables are shown in the table below.

Variable Definition and Purpose
-- This is the null channel. It is used to indicate that a specific channel has

not be selected, or that the selected channel name cannot be found in
the current list of channels. This channel always has a value of Not-a-
Number (NaN).

Time (Sec) This channel has the value of the time in seconds since midnight, Jan
1, 1904. This date and time value has a precision of tenths-of-a-
second.

Sec Since Midnight This channel has a value of the number of seconds since midnight of
the current day.

Error This channel has the value of the most recent error code. It is cleared
on every loop of the Acquisition module. Thus if this channel has a
constant value for more than one loop time, it is probable that the
error is recurring at a regular interval.

 In addition to the above listed Program State Variables, previous versions of
MICAS-X had additional Program State Variables, which have now been moved to the
System Driver. In this way, they are now optional, and if you do not wish them to be
included in your data, you need not include them in the System Driver configuration.
Some of the previous Program State Variables that are now System Variables are:

Variable Definition and Purpose
Acquire This channel has a value of 1 when the program is acquiring Driver

data, 0 otherwise.
Record This channel has a value of 1 when the program is recording data to

the user-defined files, 0 otherwise. Previous to version 2.2, this
variable directly reflected the result of the Record command. As of
version 2.2, there are commands that can turn on and off writing for

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 165

each file. This variable will have a value of 1 whenever at least on file is
writing data.

Debug This channel has a value of 1 whenever the program is in Debug mode,
0 otherwise.

Last Acq Time This channel has the time in seconds since midnight, Jan 1, 1904, of
when the Acquisition Loop 0 last acquired data.

of Alarms This channel indicates how many Alarms are currently True.

Current Tab This channel identifies the tab being displayed in the main MICAS-X
window. 0 = Control tab, 1-14 = Display tabs, 15 = Utility tab, 16 =
Summary/MICAS tab, 17 = Debug tab.

9.6.15 Commands

 Much of the MICAS-X functionality is designed around Commands. Sequences,
Triggers, Buttons, and other mechanisms in MICAS-X all cause actions by sending
Commands to the MICAS-X Command Loop. The list of standard Commands is shown in
Appendix B. In addition, Drivers can implement custom commands. If a Driver is written
correctly, any Commands that the Driver supports will be available throughout the
MICAS-X system whenever that Driver is included in the current configuration.

 Commands in MICAS-X have the following structure:

Command:String Argument:Numeric Argument

 The functionality of the String Argument and the Numeric Argument vary
depending on the Command being used, and some Commands may not require one or
either of these arguments. When a Command is being configured in the MICAS-X
Configuration Editor, the program knows which arguments are needed for each
Command, and presents the user with the relevant parameters.

 For example, the Set Command is used to set a Controller (output) channel to a
new value. It therefore requires a valid Controller channel name as a string argument,
and the new value of the channel as the numeric argument. Thus in the Configuration
Editor, when the Set Command is chosen for a Sequence step or a Trigger, the string
argument is automatically populated with a list of all available Controller channels, and
the numeric argument is enabled. In contrast, the Restart Command requires no
parameters, so when this Command is chosen in an editor, both the string and numeric
arguments are disabled.

 The fact that Commands can only take one string and one numeric argument is a
significant limitation of the MICAS-X Command structure. In particular, this makes it
difficult to structure a Command that will operate on the values of two channels, such as

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 166

adding them together. As a partial resolution to this limitation, a special set of
Commands has been created that act on the Global Channels. All the Commands listed
in Appendix B that contain the letters “Gbl” are part of this set of special commands.
These commands act on a Channel and Global. The Channel is specified by the string
parameter, and the Global is specified by its number.

 A more recent addition to MICAS-X to address this command limitation are a new
set of five two-channel commands. For these commands, the two channels required are
put into the same string, with a comma between them. The channels are referred to as
the Source Channel and the Target Channel. The Target Channel is where the result of
the operation goes. So for the command AddChToCh, the sum of the values of the
Source Channel and the Target Channel ends up in the Target Channel.

 In the configuration editor, the Triggers and Buttons have direct entries for the
Source and Target Channels. The Sequence Editor was not designed with room enough
for an additional parameter, so a new Sequence Command (SourceCh) has been added.
To use one of the two-channel commands, first use the SourceCh command to define a
source channel, then use the two-channel command to define the target channel. (Note
that the Source Channel for each Sequence in the current configuration is remembered,
so if multiple two-channel commands are to be used that all have the same Source
Channel, the Source Channel only needs to be set once.

 E.g. Global 0, though it may have been given a text name in the configuration,
such as “Temp Setpoint”, is referenced by using a value of “0” for the numeric
parameter. As a further example, assume that there is a Manual Channel named “Temp
Increment” in which the operator can enter a increment value in degrees C, and that
Global 0, which has been named “Temp Setpoint” is used to control a temperature. The
Command “AddToGlb” can be used with the string argument “Temp Increment” and the
numeric argument “0” (the Global index) to add these two channels together, with the
result being placed in the Global Channel.

 The set of special global Commands includes commands to copy date from a
Channel to a Global or from a Global to a Channel. It also includes commands to add,
subtract, multiply, and divide two channels, where one is a standard channel and one is
a global. Commands are available that place the result in either the normal channel or
the global, as desired.

 Although this mechanism is admittedly round-about, it can be used to
operate on any two normal channels through the use of Globals. For example, if one
needed to add two normal channels and put the result into the second of the two
channels, one could create a Global for temporary use, copy the first channel to the

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 167

Global, then use the “AddGlbToCh” Command to add the value in the Global channel
into the second normal channel.

9.6.16 Constants

 Constants are much like Channels, but with several limitations. Constants are
defined in the Configuration Editor and are given a value when configured. Their value
cannot change while the program is running. Constants are not written to data files and
do not show up in lists of channels to graph or select for other purposes. Thus constants
can serve as experiment-specific parameters, but they help keep the data and user
interface cleaner by not adding to the total number of Channels that the operator must
deal with. The archived configuration file serves as the record of the value that the
constants had when the data was taken.
 Constants can be useful for experiment-dependent values such as the
dimensions of a piece of apparatus that is used in a calculation, a physical constant used
in an equation, or an experimental identification number. An alternative to using
constants for these functions is to use a Manual Channel. However, Manual Channels
will be written to the main .tdms data file, possibly written to other data files, and will
appear in lists of channels used for graphing and display. Having channels with
unchanging values appear in these places clutters the data unnecessarily.

9.6.17 OSDS

 The OCC Streaming Data System (OSDS) is a LabVIEW software package produced
by OCC and available to the LabVIEW community as open source software. A
description of this package can be found on the OCC website
(www.originalcode.com/OSDS.html). The purpose of OSDS is to abstract the reading and
parsing of streaming data, so that streaming data sources (those which send data at
regular intervals, without being queried) can easily be added to a LabVIEW program by
simply creating a proper OSDS definition file. OSDS has been integrated into several
data acquisition programs, including MICAS-X. OSDS supports reading data from serial
ports and from Ethernet via UPD, UDP Multicast, TCP, and NTP. It also has several ways
of reading the computer clock to yield timestamp data.
 MICAS-X uses OSDS in two ways. First, there is an OSDS Driver in MICAS-X (see

Section 7.5.9), which allows any OSDS format file, either new or pre-existing from
another application, to be used to read data from streaming data sources, such as
aircraft navigation data, GPS’s, laboratory scales, and other instruments. This MICAS-X
OSDS Driver puts a MICAS-X compatible wrapper around all the existing OSDS
functionality, and uses the existing OSDS Readers and Parsers. The OSDS Format Editor
is included with the MICAS-X program so that OSDS Format files can be created and
edited as necessary.

mailto:dthomson@originalcode.com
http://www.originalcode.com/OSDS.html
http://www.originalcode.com/OSDS.html

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 168

 The second use of OSDS in MICAS-X, prior to version 3.3.2, is that several MICAS-
X Drivers which operate with streaming data sources have commands with start and stop
the recording of the raw data stream into OSDS Stream files. OSDS Stream files are an
extension of OSDS Format files. They include the OSDS Format information, indicating
how the data was read, as well as time-stamped records of the raw data that the
program saw on the specified port. This can be useful in debugging communication with
an instrument. By capturing the raw data stream in an OSDS Format file, one can then
use the OSDS Simulator to play the data back again in the future and test new OSDS
Formats against it until the data is properly parsed. Drivers which currently allow the
recording of OSDS Stream files include the Airmar, MOSDS, Omega, and Prime Scales.
Note that in version 3.3.2 and later of MICAS-X, the OSDS stream file writing was
replaced by ICM stream file writing.

9.6.18 ICM

 ICM (Instrument Communication Module) is a successor to OSDS (see Section

9.6.17.) Like OSDS, ICM is highly configurable, allowing one to add new data sources to
MICAS-X (or other programs) by creating an appropriate configuration file rather than
writing an entire Driver. ICM is more advanced than OSDS, however, as it can parse many
more types of instrument data, can scale data through several mechanisms, and can
write to output channels as well as read input channels (whereas OSDS could only read

input channels). As of version 3.2.0, the ICM Driver (see Section 7.5.8) is included in the
MICAS-X base package. As of version 3.3.2, ICM is used for writing streaming files in
several of the MICAS-X Drivers. ICM is open source and can be found on GitHub at
https://github.com/NI-ALARM/ICM.

9.7 Using Channel Values in Text

 Text used in MICAS-X can be formatted in such a way that a Channel name is
replaced with the Channel’s value before the text is displayed or stored. This is done by
putting a “#” character immediately before and after the Channel name. Thus, if a
Sequence step is configured to use the Log Command to send the text “Chamber
temperature is #Chamber Temp (C)# degrees C.”, and if the Channel “Chamber Temp (C)”
has a value of 25.3, then when the actual text is logged, it will appear as “Chamber
temperature is 25.3 degrees C.”

 Previous to Version 3.2, only the Email Instrument and the Alert Command
supported replacing Channel names with their values in this way. As of Version 3.2,
however, this feature can be used in numerous places, including:

 Log a Message menu item in MICAS-X File menu

 Message text field on Control tab of MICAS-X

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 169

 Log This button MICAS-X tab of MICAS-X

 Log This button on 3Graphs Display

 Log Command

 Alert Command

 Ask Command

 AskOK Command

 Ask(Num) Command

 OpenNotifier Command

 Send Command

10 MICAS-X-RT Operation

This chapter discusses the operation of MICAS-X-RT on a Real-Time platform. See

Chapter 9 for information on the operation of MICAS-X on Windows.

MICAS-X-RT can be configured to run automatically when the RT system boots, or in
interactive mode from within the LabVIEW environment. The program has a limited user
interface, which only is accessible when the program is run interactively. This UI will be

discussed in Section 10.1. Normal operation, however, is to have MICAS-X-RT installed
on the Real-Time system as a startup program so that it runs automatically at boot-up. In
this mode, it is possible to have a configuration file on the RT platform that defines how
the program should configure itself and begin acquiring data. Without this “Auto-
Load.ini” file, the program will run but will await a configuration from a Windows
machine before starting any acquisition or control.

10.1 MICAS-X-RT User Interface in Interactive Mode

MICAS-X-RT is designed to be run headless and automatically on a Real-Time
system. However, there may be times when it is useful to run it interactively. If it is
launched from within the MICAS-X project in LabVIEW, one can see and interact with the
program’s front panel. This section describes the controls and indicators available under
these circumstances.

The Config File indicator displays the name of the configuration file that MICAS-X-RT

is currently using. See Section 6.3 for information on MICAS-X-RT configuration files.

Under the Config File indicator are four status LED indicators. Command Link
Connected and Message Link Connected will be lit whenever the relevant Network
Streams connections are active between MICAS-X-RT and the MICAS-XRT Driver running

in MICAS-X on Windows. These connections are discussed further in Section 7.6.16.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 170

The Stop button in the upper right corner will stop the program. Underneath the
Stop button is a list of all the channels in the current configuration and their current
values.

Just to the left of the channel list is a scrollable array of all the Triggers defined in
the current configuration. Each Trigger displays its Name, its State (both in text and by
color) and the Time at which it most recently became active.

At the bottom of the screen is an array of messages. The messages displayed here
are the most recent error and event messages generated by the program, but only those
which have not been successfully sent up to MICAS-X on Windows. When MICAS-X is
connected (via the MICAS-XRT Driver), any messages generated on the RT system are
automatically sent to the MICAS-X log file. Note that all log messages generated on the
RT system are also logged locally on the RT file system.

Above the Messages display is a section of controls which allow the operator to
specify and execute any Command that the MICAS-X-RT system supports. Above the
Command controls are a pair of controls that allow any Controller channel’s value to be
set. These Command and Controller controls operate in a similar manner to those on the

MICAS-X program, described in Section 9.3.4.

10.2 Configuring MICAS-X-RT

 MICAS-X-RT uses the same type of configuration file as MICAS-X. This
configuration file should be created using the MICAS-X Configuration Editor on a
Windows machine. When creating this configuration file, set the “Target” parameter to

“Real-Time”, as discussed in Section 7.1. Section 7.4.1.2 has additional information on
editing a MICAS-X-RT configuration file.

 In order for MICAS-X-RT to use the configuration file, it must either be sent to
MICAS-X-RT by the MICAS-XRT Driver, or it must be renamed as “Auto-Load.ini” and

transferred to the C:\OCC\MICAS-X Support” folder on the RT target. See Section 10.3
for information on how to use the MICAS-XRT Driver to connect to MICAS-X-RT.
Information on transferring files directly to the Real-Time target can be found in National
Instruments’ LabVIEW and hardware help, or can be requested from Original Code
Consulting.

10.3 Connecting to MICAS-X-RT with MICAS-X

 Although other mechanisms are available and/or can be developed, the primary
method of connecting to MICAS-X-RT is through the MICAS-X program on Windows,
using the MICAS-XRT Driver. Configure the MICAS-XRT Driver as described in Section

7.6.16. In particular, enter in the MICAS-XRT Driver configuration the name of the
configuration file that you wish MICAS-X-RT to use. When MICAS-X is run on Windows
with the MICAS-XRT Driver included, it attempts to connect to MICAS-X-RT whenever

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 171

Acquire is True. When a connection is made, the MICAS-XRT Driver sends the Real-Time
configuration file to MICAS-X-RT on the Real-Time target. If the configuration file being
sent down is the same (e.g. has the same CRC value) as the configuration file already in
use on the Real-Time target, then MICAS-X-RT continues to run without interruption. If
the configuration file does not match exactly, MICAS-X-RT will stop its current operation
and load the new configuration. Thus, if uninterrupted operation of MICAS-X-RT is
important, it is imperative that the current MICAS-X-RT configuration file be available on
the host Windows computer and configured properly in the MICAS-XRT Driver.

 MICAS-X-RT and the MICAS-XRT Driver are designed to allow repeated
connection and disconnection. As long as the MICAS-XRT Driver does not send a new
configuration file down to MICAS-X-RT, the connection can be severed and reacquired
without interrupting any functionality on the Real-Time target. There are several
caveats, however, with regards to how data is transferred to the Windows host MICAS-X
program. Note that all error and event logs generated on the Real-Time target are saved
to the local Real-Time log file. In addition, whenever MICAS-X on Windows connects to
MICAS-X-RT, any pending log messages that have not been sent up to the host computer
will then be sent. There is, however, a maximum buffer of 100 log messages. If more
than 100 log messages are generated while the two systems are disconnected, only the
most recent 100 messages will be sent to the host computer when the connection is re-
established.

 Also note that the channel values from MICAS-X-RT that are available on the host
system are only transferred when the connection is present. When a connection is
broken and then re-established, the history of missing values is not sent to the host
computer. Thus time-series graphs and other history displays of MICAS-X-RT channels on
the host system will only have data available from when the connection was maintained.

 Because of the above limitation on history data, it is strongly suggested that the
MICAS-X-RT system be configured to store data locally. Also note that MICAS-X-RT does
not utilize the .tdms master data file that MICAS-X on Windows does. That is, if no File
Writer files have been defined, MICAS-X-RT will not save any data. Use the File Writer

configuration (Section 7.4.4) to create local log files on the Real-Time system. In
addition, be sure to set Record ON. If Record is not turned on, data will not be saved.
Record can be turned on when MICAS-X-RT starts via the “Record on Start-up” option

(see Section 7.4.1.2), or by using the Record Command with a non-zero value. (The lack
of a .tdms file and the default of not recording data automatically are due to the limited
disk space available on many Real-Time platforms.)

 Note that even if you do not record data on the Real-Time platform via the File
Writer module, the Log File will continuously be updated. Thus it is important to manage
the disk space on the Real-Time platform by reviewing, archiving, and deleting files as
necessary.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 172

10.4 Debugging MICAS-X-RT Issues

 Due to the nature of the Real-Time platform, debugging code running within
MICAS-X-RT can be significantly more challenging then debugging code running in
MICAS-X on Windows. When errors occur in MICAS-X-RT, always review the log file
carefully. (The same is true for MICAS-X.) Often, a situation will present itself as a
repeating error that happens regularly the entire time the program is running. However,
the root cause of this error can usually be traced back to the beginning of the program
run. Look at the portion of the log file when the program was first started. Usually there
will be a different error that occurred when the offending piece of code was first launch
or first run. That error will usually give better clues to the problem than the later,
recurring error.

 One of the best approaches to resolving problems with MICAS-X-RT is to rebuild
and redeploy all the RT code. This is most often done by OCC, but if you have a license
for the LabVIEW environment and understand the process, you can execute this process
as well. Rebuild each component of software that the MICAS-X-RT system is using. This
process will guarantee that no components have compile-time errors present.
Redeploying all the components will then assure that all the components are consistent
and compatible with each other. It can also be useful to run MICAS-X-RT in interactive
mode after deploying all the components, since the limited user interface in this mode
may provide some additional clues to problems that are occurring.

 If multiple errors are happening, it can be very useful to create new configuration
files, each with just one Driver or Instrument included, so that issues can be pinned
down to the specific component that has a bug. Sometimes, a single Driver will fail to
load because one of its dependencies is not present in the LabVIEW software loaded on
the RT target. In this case, MICAS-X will report a 1026 error code, indicating that a VI was
broken and could not be run. This type of error might be resolved by rebuilding and
redeploying, as above, or it may be necessary to install additional LabVIEW software on
the RT target.

 One common symptom is that one Driver may be broken, as described above,
resulting in a 1026 error. When this happens, that Driver’s channels are not known to
MICAS-X-RT. Because the channel list is incomplete on the RT target, it will not match the
channel list that the MICAS-XRT Driver on Windows expects. In this case, the MICAS-XRT
“Connected” channel will not have bit 2 (value 4) set, and will therefore most often have
a value of 3 (bits 0 and 1 may still be set, indicating command and message links have
been made). With bit 2 not set, MICAS-XRT will not see any of the data from the RT
target. This issue will only be resolved when both the RT and Windows targets have the
same channel list, which means that MICAS-X-RT must be debugged until all its Drivers
are working correctly.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 173

11 Utilities

 Utilities are helper programs that work with MICAS-X. By definition, they include
functionality that is not needed continuously while MICAS-X is running, but may be
needed occasionally. Utilities can be used for reviewing data, editing the configuration
files, or performing calibrations. Utilities can be run inside MICAS-X, by selecting them
from the Utilities menu (in which case they appear in the Utility tab), or they can be run
inside LabVIEW, or they can be run as compiled executable programs separate from
MICAS-X. Several Utilities are included with the base copy of MICAS-X, as described
below.

 Utilities are supported only in MICAS-X for Windows, and not in MICAS-X-RT.

11.1 Command Interface

 The Command Interface is not included in the MICAS-X base package, but is
included whenever the Command Instrument is purchased. The Command Instrument
is a MICAS-X module that allows MICAS-X to receive commands from another system,
either over UDP via Ethernet or over a serial line. The Command Interface is an example
of how to send these types of commands to MICAS-X. It can be used to send commands
to the same instance of MICAS-X that it is running in, as a test system, or it can send
commands to another instance of MICAS-X.

11.2 Configuration Editor

 The Configuration Editor is a key element of the MICAS-X system. It is described
in its own section of this manual. The Configuration Editor is used to create and
maintain the configuration file(s) which define how MICAS-X works and what
functionality it includes.

11.3 Data Reader

 The Data Reader Utility reads and presents the data saved in the .csv files that
MICAS-X creates. With the Data Reader, you can graph any of the data channels vs time
or vs any other channel. The format is simple enough that a .mdoc can be created with
any text editor. However, the mdoc Editor Utility in MICAS-X can also be used as a quick
and easy way to create .mdoc files.

11.4 FTP Utility

 The FTP utility implements a simple FTP file transfer interface between the
computer running MICAS-X and another computer. It can be useful for manually

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 174

transferring data files from an embedded MICAS-X program to the windows host, or for
other file transfers.

 First, on the Connect tab, provide the proper information for the “FTP Server”,
“FTP Server Directory”, “User Name”, and “Password” parameters. Then press the “Press
to Connect” button. Then move to the “Transfer” tab. Here you can select the directory
you want to transfer files from. To transfer a file select it and click the move button
nearest the file display you are transferring from. The file can also be deleted by
selecting the corresponding delete buttons. Before deleting a directory, make sure to
check that it is empty. The lower button of each pair corresponds to the right file display.

11.5 mdoc Editor

 The .mdoc file format is a simple text file which includes section names that are
created in such a way that MICAS-X can parse the sections for display with the
Document Display. The formatting required for the Document Display is simply that
each Section must be preceeded with a line of text that starts with two asterisks,
contains the section name, and ends with a line feed. Thus a section format line might
look like this:

**Introduction

 The mdoc Editor Utility provides a quick and convenient way to create and edit
mdoc files. To create a new mdoc file, run the program and cancel any file dialog asking
for a file to load. Click on the uppermost Insert button to create the first section. Then
click on that section in the Sections list. Once the section is highlighted, you can edit its
name in the Section Name parameter below the Sections list. Enter the text for that
section in the Text box to the right. You can continue to Insert and Delete sections, and
edit any section’s name or text by first clicking on it in the Sections list. Use the Load A
Document button to read in an existing mdoc file. Use the Save button to save the
current document. If the document is new, the Save button will be greyed out. Use the
Save As button to save the document to a new file.

11.6 .mdoc Reader

 The .mdoc file format is a simple text file which includes section names that are
created in such a way that MICAS-X can parse the sections for display with the
Document Display.

 The .mdoc Reader Utility provides a quick and convenient way to view .mdoc
files. When you open the driver you will be asked to navigate to the desired .mdoc file.
The Section menu allows the user to select a section from the current document. The

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 175

Document menu allows the user to select between loaded documents. The “Load a
Document” button will load a new document to the documents menu.

11.7 Log Reader

 The Log Reader Utility presents a log file for review. If it is launched within
MICAS-X, the current log file is automatically loaded, and will be updated in the Log File
Reader whenever it changes. Any other log file can be loaded whenever desired, to
review previous logs.

11.8 TMDS File Reader

 The TDMS File Reader allows you to review the data stored in the .tdms file that
MICAS-X stores behind the scenes. It has numerous ways to view the data, including
time-series charts and tables.

12 MICAS-X Security Device

 The MICAS-X license is protected through a USB hardware security device. The
device is a blue USB dongle about the size of a USB thumb drive and will have labels with
“MICAS-X” on one side and “SN xx” on the other. The serial number for the MICAS-X
license is embedded in memory on this device. Note that there is no user-accessible
memory on this device.

 If MICAS-X is run with no security device present, it will operate normally for 10
minutes in “demo” mode. After the 10 minutes are up, Recording and Acquiring will be
turned off, and no new commands will be executed.

 There is an indicator on the MICAS-X tab that displays the status of the security
device. In addition, if no security device is present, an error message will be logged to
the log file, both when the program is first run and it enters the demo mode, and 10
minutes later when most functionality is inhibited.

 In certain licensing situations, an expiration date may be applied to the security
device. If the expiration date has passed, MICAS-X will work for 10 minutes in demo
mode before inhibiting most functionality.

 The About menu item in the Help menu can be used to view the status of the
security device. The About window displays the current security device status, the
MICAS-X serial number, and the expiration date, if one is set.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 176

13 Appendix A: Reserved Keywords

 There are some keywords that are used internally within the MICAS-X system,
and therefore should not be used as names for Channels, Sequences, Triggers, etc.
Duplication of names should be avoided, including the use of names that contain other
names within them. Note that the Channels window in the Configuration Editor under
the Modules selection will help identify duplicate names and partially conflicting
channel names.

 In addition to the Keywords listed below, the MICAS-X Commands are
documented in a separate section.

 Reserved Keywords include:

Reserve Keyword Effect
#DisplayTabs This is a Constant Channel, the value of which is set equal to the

number of Display tabs in use in the current configuration. This
number does not include the Control tab (tab 0), the Utility tab
(tab 15, which is often not shown), the MICAS tab (tab 16), or
the Debug tab (tab 17). It starts at 1 and only includes tabs used
for Displays and Instrument displays.

Acquire This is a channel that is always created by MICAS-X (a Program
State Variable) and which has a value of 1 if MICAS-X is
acquiring data and a value of 0 if it is not.

Acquire Time This is a Timer that is always included in MICAS-X whenever the
Timers Driver is included. It contains the value of the time in
seconds since MICAS-X started acquiring data. It has a value of -
Inf if MICAS-X is not acquiring data.

All This keyword is the name of a List of Channels that is always
present. It contains all the Channels defined in MICAS-X.

 (avg) When the Averager Driver is configured to create new Channels,
(e.g. not to overwrite the existing Channels), the new Channel
created for each average is the name of the source Channel
with the text “ (avg)” appended to it.

Debug This is a channel that is always created by MICAS-X (a Program
State Variable) and which has a value of 1 if MICAS-X is in Debug
Mode and a value of 0 if it is not.

DisableTimer This is a command used by the Timers Driver.
Error This is a channel that is always created by MICAS-X (a Program

State Variable) and which has the value of the most recent error
code reported by MICAS-X. Most of the error codes used in
MICAS-X are defined within LabVIEW, though some custom

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 177

error just for MICAS-X are defined and must be documented
somewhere...

Median This keyword is used in the Equations Driver to calculate the
median value of a list of channels.

Min This keyword is used in the Equations Driver to find the largest
value in a list of channels.

Max This keyword is used in the Equations Driver to find the smallest
value in a list of channels.

ML “ML” is a special prefix used by the M-Link Driver to uniquely
identify Channels, Commands, and Sequences on a separate
MICAS-X system. It should never be used as a prefix for any
other MICAS-X module.

Mode The word “Mode” is used as a prefix to names in the Controller
Driver to create channels that are used to control the mode of
PID and Simple Controller channels. The Mode channels switch
between Manual and Auto (PID) modes.

Rate This keyword is used in the Equations Driver to calculate the
rate of change of a channel.

Record This is a channel that is always created by MICAS-X (a Program
State Variable) and which has a value of 1 if MICAS-X is
recording data to a file and a value of 0 if it is not.

Record Time This is a Timer that is always included in MICAS-X whenever the
Timers Driver is included. It contains the value of the time in
seconds since MICAS -Xstarted recording data. It has a value of
-Inf if MICAS-X is not recording data.

Rollover When Rollover Channels are included in the Timers Driver, each
existing Timer Channel has a new Channel created that has the
same name, with the text “ Rollover” appended.

Run Time This is a Timer that is always included in MICAS-X whenever the
Timers Driver is included. It contains the value of the time in
seconds since MICAS-X started running.

Sec Since Midnight This is a channel that is always created by MICAS-X (a Program
State Variable) and which contains the time in seconds since
midnight of the day that MICAS-X was started. (Note that if
MICAS-X is configured to restart data files automatically at
midnight, this channel’s value will also restart at 0 at midnight.)

SeqState When the Sequences Driver is included in the MICAS-X
configuration, “SeqState “ is prepended to each Sequence
Name to create a channel for each Sequence State (0 = Off, 1 =
Running), so that they can be turned on and off using the “Set
command.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 178

SeqStep When the Sequences Driver is included in the MICAS-X
configuration, “SeqStep “ is prepended to each Sequence Name
to create a channel to record the step number each Sequence is
currently in. These channels are set to a value of -1 for each
Sequence that is not running.

Time (sec) This is a channel that is always created by MICAS-X (a Program
State Variable) and which contains the time and date in seconds
in UTC Time since midnight, Jan 1, 1904.

TrigState When the Triggers Driver is included in the MICAS-X
configuration, “TrigState “ is prepended to each Trigger Name to
create a channel to record each Trigger State (0 = False, 1 =
Warning, 2 = True, 3 = Alarm).

TrigThr When the Triggers Driver is included in the MICAS-X
configuration, “TrigThr “ is prepended to each Trigger Name to
create a channel for each Trigger Threshold, so that they can be
set using the “Set” command.

Alarm, Buttons, Channel,
Channels, Cluster,
Command, Condition,
Control, Controllers,
Device, Disp, Display,
Drivers, Enumerated, Exit,
False, File, Files, Globals,
History, Hysteresis,
Include, Initial, Instr,
Instrument, Label, Left,
List, Log, Max, Min,
Names, Notes, Option,
Outside, Prefix, Prefixes,
Right, Sequences, Set,
State, Steps, Switches,
Tab, Tabs, Text, Thresh.,
Time, Timed, Top, Trigger,
Triggers, True, Update,
Value, Values

These terms are used for various parameters in the
configuration file. If any of these terms are used as channel
names or prefixes, then the Rename Tools will corrupt these
channel names. E.g. in most cases, these words can be used as
channel names with no issues, but be aware that the Rename
functions can cause problems when they are used. If these
terms are used as part of a longer channel name, then the
channel name can safely be renamed using the Rename Tool.
Also note that this list is inherently incomplete, since every
Driver, Instrument, and Display may have additional terms that
are used in its configuration information.

XRT “XRT” is a special prefix used by the MICAS-XRT Driver to
uniquely identify Channels, Commands, and Sequences on a
MICAS-X-RT RIO system. It should never be used as a prefix for
any other MICAS-X module.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 179

14 Appendix B: Commands

 MICAS-X includes a set of Commands that can be used in Triggers, Sequences,
Buttons, and Commands. In addition, Drivers can implement custom Commands. The
custom Commands for Drivers are not documented here. They are listed in the
documentation for each Driver and in the list of Driver Commands below.

 The standard MICAS-X Commands are:

Command Parameters Description

Log string to log Sends text to the log file.

Alert1 string for alert text,
numeric code

Creates various kinds of user alerts.

Acquire numeric (0 off, 1 on) Starts or stops the acquisition of Driver
data.

Record numeric (0 off, 1 on) Starts or stops the recording of files.

RecordOnce none Starts recording (in Acquisition Loop 0)
for just one point. Recording stops after
Acquisition Loop 0 has acquired data
once.

FileRecord string, numeric (0 off, 1
on)

Turns recording on or off for a single
file. The file string can be the Prefix of
the file or the index number of the file.

File1ofN string, numeric Sets the file writing rate. The file string
can be the Prefix of the file or the index
number of the file. The numeric is the
number “N” defining how often to write
data to the file. Any value less than 1 is
coerced to 1.

Set channel, value to set Sets the value of a controller channel.

Add channel, value to add Adds a constant value to a controller
channel.

Subtract channel, value to subtract Subtracts a constant value from a
controller channel.

Multiply channel, value to multiply
by

Multiplies a controller channel by a
constant value.

Divide channel, value to divide
by

Divides a controller channel by a
constant value.

Incr channel Increments a controller channel by 1.

Decr channel Decrements a controller channel by 1.

AddChToCh2 channel,channel Adds a channel value to a controller

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 180

channel.

SubChFromCh2 channel,channel Subtracts a channel value from a
controller channel.

MultChByCh2 channel,channel Multiplies a controller channel by a
channel value.

DivChByCh2 channel,channel Divides a controller channel by a
channel value.

CopyChToCh2 channel,channel Copies a channel value into a controller
channel.

AddToGlb3 channel, numeric address
of global

Adds a channel value to a global
channel.

AddGlbToCh3 channel, numeric address
of global

Adds a global channel value to a
controller channel.

CopyToGlb3 channel, numeric address
of global

Copies a channel value into a global
channel.

CopyFromGlb3 channel, numeric address
of global

Copies a global channel value into a
controller channel value.

DivGlb3 channel, numeric address
of global

Divides a global channel by a channel
value.

DivChByGlb3 channel, numeric address
of global

Divides a controller channel by a global
channel value.

MultGlb3 channel, numeric address
of global

Multiplies a global channel by a channel
value.

MultChByGlb3 channel, numeric address
of global

Multiplies a controller channel by a
global channel value.

SubFromGlb3 channel, numeric address
of global

Subtracts a channel value from a global
channel.

SubGlbFromCh3 channel, numeric address
of global

Subtracts a global channel value from a
controller channel.

Abs channel Makes a controller channel value equal
to its absolute value.

Negate4 channel Makes a controller channel value equal
to the negative of its value.

Recip channel Makes a controller channel value equal
to the reciprocal (1/x) of its value.

Not4 channel Makes a controller channel value equal
to its logical negation. (0 becomes 1,
any non-zero value becomes 0.)

SetTrigger channel (trigger), value Sets a Trigger Threshold channel to a
value. Channel can be the trigger name
or the name of the Trigger Threshold

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 181

Channel for that Trigger.

TriggerDisable trigger Disables a trigger. If it was True or Alarm
before, it will execute the True-to-False
action. While Disabled, it will ignore its
Condition.

TriggerEnable trigger Enables a trigger. If its Condition is then
met, it will execute its False-to-True
action.

StartSeq sequence, value Starts a sequence. Value specifies the
step number to start at. This defaults to
0.

StopSeq sequence Stops a sequence.

StopAllSeq Stops all running sequences. Any exit
steps of the sequences that are stopped
will still execute. If this command is in a
Sequence, it will stop its own sequence.

StopSeqSet sequence set Stops all sequences that are running
and that are in the Sequence Set
specified.

PauseSeq sequence Pause a sequence that is running.

UnpauseSeq sequence Resume a sequence that is paused.

SingleStepSeq sequence Causes a paused Sequence to execute a
single step. Returns an error if the
Sequence specified is not paused.

EnableDriver driver name with prefix Enables a Driver.

DisableDriver driver name with prefix Disables a Driver.

JPG none Stores a .jpg image of the current
screen.

PNG None Stores a .png image of the current
screen.

Tab numeric of tab to go to or
text of tab name

Displays the requested tab or window.
This command uses the text string
unless the text string is blank, in which
case it uses the numeric.

Tab(Channel) channel Displays the tab specified by the value
of the channel.

Launch path and name of a
program or VI

Starts a LabVIEW VI or Windows
executable program.

Script script command (string) Embeds an entire Script Command in a
Sequence Step.

HelpText text (string), index n Specifies the text for entry “n” for the

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 182

(numeric) Help Box, an optional text box on the
Control tab.

ViewHelp index n (numeric) Specifies the index of the Help text that
will be displayed in the Help Box.

Ask – only available in
Sequences

text, source channel Presents a dialog to the user asking for
a Yes/No response, which is assigned to
the channel.

Ask(OK) – only
available in Sequences

timeout (numeric) Presents a dialog to the user which
waits for user acknowledgement. No
information from the user is returned. If
timeout > 0, the dialog will close after
that many seconds even if no user input
has been received.

Ask(Num) – only
available in Sequences

text, source channel Presents a dialog to the user asking for
a value, which is assigned to the
channel.

OpenNotifier text(string), timeout
(numeric)

Presents the Notifier window which
displays the text string. If timeout is <>
0, the window will close automatically
after that many seconds. If the timeout
is <0, the absolute value of the time-out
will be used, and a “Continue” button
will be shown which can be pressed to
close the window before the time-out is
over.

CloseNotifier none Closes the Notifier window, if it is open.

CloseAllQG None Closes all Quick Graph windows.

Utility Utility name (string) Opens the requested Utility. The Utility
name string can include the “.vi”
extension or not. If the string is blank,
the Command will cause any open
Utility to close.

Send string Sends an arbitrary string out a serial or
UDP port via the Broadcast Instrument.

Comment documentation (string) Used for documenting the sequence
only, no operation.

CompReboot none Stops MICAS-X and reboots the
computer.

CompShutdown none Stops MICAS-X and shuts down the
computer.

Exit none Stops MICAS-X.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 183

Restart none Stops MICAS-X and immediately restarts
it.

Wait(Value) – only
available in Sequences

numeric value to wait in
seconds

Waits a constant number of seconds
before executing the next Sequence
step.

Wait(Channel) – only
available in Sequences

channel Waits the number of seconds specified
by the channel value before

183executing the next Sequence step.

Wait(NewValue) –
only available in
Sequences

channel, value Checks every “value” seconds to see if
“channel” has changed its value. (The
minimum “value” check time is 0.1
seconds.)

WaitUntilValue – only
available in Sequences

channel, value Waits until “channel” has the value
specified by the “value” parameter

Wait(Sequence) –
only available in
Sequences

sequence, value Checks every “value” seconds to see if
“sequence” is done or not. Continues
waiting until “sequence” is done. This
allows Sequences to be used as sub-
routines. (The minimum “value” check
time is 0.1 seconds.)

Goto – only available
in Sequences

label Directs the Sequence to move execution
to the specified step.

SourceCh – only
available in Sequences

channel Specifies the source channel for the
following sequence step for commands
that require both a source and a target
channel3

CondSource – only
available in Sequences

channel Specifies a source channel for use with a
Condition in a Sequence Step.

ExitStep – only
available in Sequences

none Executes the Exit Step for the Sequence
(if one is defined)

Get – only available in
Command Interface
Utility

channel Commands MICAS-X to reply to the
Command Interface with a report of the
value of the channel specified.

LastLog – only
available in Command
Interface Utility

none Commands MICAS-X to reply too the
Command Interface with a report of the
last message set t the Log file.

Table B:1 – Standard Commands available in MICAS-X.

 When any of the above Commands are configured in a Configuration Editor, the
Editor knows what parameters the Command needs and presents the proper options.
E.g. for the Set Command, it presents a list of Controller Channels and a Value field.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 184

When new Commands are added to new Drivers, the VI “MICAS-X Select Config Display
Options.vi” can be edited to inform MICAS-X of what parameters each Command needs.
However, if custom Driver Commands are added that are not supported by “MICAS-X
Select Config Display Options.vi”, the Editors do not know what parameters each
Command requires. Hence the Editor will present a string parameter and a numeric
parameter. The user must ensure that the string parameter (if the command requires it)
is filled in with the proper item and that the item is spelled exactly correctly. In addition,
in the Triggers and Sequences Editors, when the mouse is above a Command control,
help information for that Command is displayed.

1) The Alert command can present an Alert in numerous ways. The numeric parameter
is used to specify how the Alert is presented to the operator. The value of the numeric
parameter is assembled in a bit-wise fashion.
If bit 0 (value = 1) is set, the dialog is suppressed.
If bit 1 (value = 2) is set, the Alert text will also be sent to the Log file.
If bit 2 (value = 4) is set, a Sequence using the Alert Dialog will not continue until the
Dialog is closed.
If bit 3 (value = 8) is set, the program will beep when the Alert is issued.
If bits 4, 5, 6, or 7 (value = 16, 32, 64, or 128) is set, the program will send the Alert text
out via Email. The four different bits correspond to four different email groups, so that
different recipients can be defined for different email messages. These bits only work if
the Email Instrument is currently included in the configuration.
If bit 12 is set, the program plays the Alert.wav file which must be located in the
Resources directory.
Similarly, if bits 13, 14, or 15 are set, the program plays the Alert1.wav, Alert2.wav, or
Alert3.wav file from the Resources directory. Any desired .wav file can be renamed
appropriately and placed in the Resources directory to create the desired alert sound.
Note that multiple bits can be set to enable multiple behaviors. E.g. a value of 17 will
suppress the dialog box and send the Alert out over Email, whereas a value of 10 will
post the Alert to the dialog box, write it to the log file, and beep. Note that a value of 1
is not useful, as the Alert would take no action. Bit 0 is used in conjunction with other
bits when no dialog is desired. The Alert Calc panel of the Configuration Editor can be
used to help calculate the proper value for an Alert to achieve the desired functionality.

Note that the Alert, Log, and Send text can include the current value of any channel(s) by
referencing the channel name between #’s. For example, if a channel named Chamber
Temp (C) has a current value of 101.0, then the Alert text “Chamber temperature too
high. Current value is #Chamber Temp (C)#.” would result in the actual text presented to
the end user of “Chamber temperature too high. Current value is 101.0.”

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 185

2) MICAS-X was original designed for commands with only a single channel parameter.
As of version 1.4.0, several commands have been added that require two channel
parameters, a source channel and a target channel. These new commands include

⚫ AddChtoCh – adds the source channel to the target channel and puts the result
in the target channel.

⚫ SubChFromCh – subtracts the source channel from the target channel and puts
the result in the target channel.

⚫ MultChByCh – multiplies the source channel by the target channel and puts the
result in the target channel.

⚫ DivChByCh – Divides the target channel by the source channel and puts the
result in the target channel.

⚫ CopyChToCh – Copies the value of the source channel into the target channel.
Pay careful attention to the use of the source and target channels, especially for the
SubChFromCh and DivChByCh commands.
 When writing a command as text, the channels are separated by commas. E.g.
“AddChToCh OffsetValue,NewValue” When configuring Buttons or Triggers, there will be
parameters visible for the source and target channels. For Sequences, however, the
editor only allows for a target channel. To accommodate these two-channel commands,
a new Sequence-only command has been added named “SourceCh”. Use this command
to set the source channel before issuing a two-channel command. For the “SourceCh”
command, use the Target Channel parameter to specify the Source Channel. Note that
each Sequence has a memory for one source channel. Thus it is OK to specify a source
channel only once at the beginning of a Sequence, if that is the only channel that will
ever be used as a source channel in that Sequence. It is more common, however, to
include a SourceCh command immediately before every two-channel command in a
Sequence.

3) The Command language of MICAS-X is limited to a Command, a string parameter, and
a numeric value. This limitation of the syntax makes it difficult to create a command
that can act on two channels, such as adding one channel’s value to that of another
channel. In addition to the “SourceCh” option described above, another way to
overcome this limitation uses a set of mathematical commands that was created that
use the numeric value as an address to a global channel. Refer to the section on Globals

9.6.13 for more information.

4) The Negate command performs a mathematical negation (multiply by negative one)
to a channel’s value. The Not command performs a logical negation to a channels value,
for which a value of 0 becomes 1, and any non-zero value becomes 0.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 186

 In addition to the standard MICAS-X commands listed above, commands can be
included in Drivers to extend their functionality. The Driver Commands below have been
fully integrated into MICAS-X and are therefore reserved keywords.

Command Driver Parameters Description
AirmarFileOff Airmar none Turns off the recording of an ICM

streaming data file.
AirmarFileOn Airmar none Turns on the recording of an ICM

streaming data file.
AriesDisable Aries Drive none Disables the Aries Drive.
AriesEnable Aries Drive none Enables the Aries Drive.
AriesHalt Aries Drive none Sends a Halt command to the Aries

Drive.
AriesMoveFwd Aries Drive none Starts forward motion of the Aries

Drive.
AriesMoveRev Aries Drive none Starts reverse motion of the Aries

Drive.
AriesSetPosition Aries Drive value Sets the current axis position to the

specified value (in mm).
AriesStart Aries Drive none Starts the axis motion.
AriesStop Aries Drive none Stops the axis motion.
AutoTune PID channel Starts a PID autotuning wizard.
AxisNDefineHome1 NIMotion none Sets the current axis position as

Home.
AxisNEStop1 Micronix none Stops all motion of the axis.
AxisNGoToHome1 NIMotion none Moves the axis to the defined Home

position.
AxisNHome1 Micronix none Moves the axis to the built-in home

position.
AxisNMoveAbsolute1 ESP7000,

Micronix
none Moves the axis to the absolution

position stored in the Target Position
channel.

AxisNMoveHomeToZero
1

Miccronix none After issuing the AxisNHome
Command, this Command can be
used to send the axis to the
calibrated zero position, after which
the AxisNSetToZero Command
should be issued.

AxisNMoveRelative1 ESP7000,
Micronix

none Moves the axis to the relative
position stored in the Target Position
channel.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 187

Command Driver Parameters Description
AxisNMoveToHole1 Micronix none After the axis is calibrated, this

Command will move the axis so that
the hole is centered on one of the
laser beam positions.

AxisNMoveToNegLim1 Micronix none Moves the axis to the negative limit
of travel.

AxisNMoveToPosLim1 Micronix none Moves the axis to the positive limit
of travel.

AxisNMoveToXEdge1 Micronix none After the axis is calibrated, this
Command will move the axis so that
the X Edge is centered on one of the
laser beam positions.

AxisNMoveToYEdge1 Micronix none After the axis is calibrated, this
Command will move the axis so that
the Y Edge is centered on one of the
laser beam positions.

AxisNResetPosition1 NIMotion value Sets the axis's current position to the
value.

AxisNSetPosition1 ESP7000 none Sets the current axis position to the
value stored in the Target Position
channel.

AxisNSetToZero1 Micronix none Sets the current axis position to 0.
AxisNStartMotion1 NIMotion none Starts the motion of the axis.
AxisNStopMotion1 NIMotion none Stops any motion of the axis.
AxisNStopMoving1 ESP7000,

Micronix
none Stops any movement of the axis.

CancelProfile PNG Laser
Positions

none This Command is used to send a
message to the PNG Profiling Display
to cancel any profile that is currently
running.

CancelWarmup GAM Laser none Cancels the warm-up timer for the
GAM Laser Driver, allowing the laser
to be turned on. Useful if MICAS-X
has been restarted but the GAM
Laser is already warmed-up.

ClearArray Array none Sets all the elements of the array to
0’s. Does not change the size of the
array.

ClearConfig MICAS-XRT None This command deletes any
“AutoLoad” configuration so that

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 188

Command Driver Parameters Description
MICAS-XRT will not have a
configuration file to load the next
time it runs.

CorrectTrigY PNG Laser
Positions

none Issues a command to the mirror
driver to move the Trigger laser in
the Y dimension by an amount
specified by the Trig Y Pos (Profile)
(um) Channel.

CorrectTrigX PNG Laser
Positions

none Issues a command to the mirror
driver to move the Trigger laser in
the X dimension by an amount
specified by the Trig X Pos (Profile)
(um) Channel.

CorrectExcY PNG Laser
Positions

none Issues a command to the mirror
driver to move the Excimer laser in
the Y dimension by an amount
specified by the Exc Y Pos (Profile)
(um) Channel.

CorrectExcX PNG Laser
Positions

none Issues a command to the mirror
driver to move the Excimer laser in
the X dimension by an amount
specified by the Exc X Pos (Profile)
(um) Channel.

CorrectTrigPSDY PNG Laser
Positions

none Issues a command to the mirror
driver to move the Trigger laser in
the Y dimension by an amount
specified by the value of the Channel
defined by the Trigger Y PSD Position
parameter.

CorrectTrigPSDX PNG Laser
Positions

none Issues a command to the mirror
driver to move the Trigger laser in
the X dimension by an amount
specified by the value of the Channel
defined by the Trigger X PSD Position
parameter.

CorrectTimPSDY PNG Laser
Positions

none Issues a command to the mirror
driver to move the Timing laser in
the Y dimension by an amount
specified by the value of the Channel
defined by the Timing Y PSD Position

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 189

Command Driver Parameters Description
parameter.

CorrectTimPSDX PNG Laser
Positions

none Issues a command to the mirror
driver to move the Timing laser in
the X dimension by an amount
specified by the value of the Channel
defined by the Timing X PSD Position
parameter.

DigAcquire ADQ14, NI
Scope

numeric (0 off,
1 on)

Turns off or on the acquire mode for
the digitizer.

DigSave ADQ14, NI
Scope

numeric (0 off,
1 on)

Turns off or on the saving of the
digitizer data to a .dig file.

DigSetTrigThresh ADQ14, NI
Scope

numeric Sets the Internal Trigger Level.

DigSWTrigger ADQ14, NI
Scope

none Sends a Software Trigger to the
digitizer.

DigTrigChannels ADQ14 none Sets the digitizer triggering mode to
Channel data. A Channel Flag
parameter is used to determine
which Channel(s) trigger the digitizer.

DigTrigChannel0 NI Scope none Sets the digitizer triggering mode to
Channel0.

DigTrigChannel1 NI Scope none Sets the digitizer triggering mode to
Channel1.

DigTrigExternal ADQ14, NI
Scope

none Sets the digitizer triggering mode to
External

DigTrigInternal ADQ14 none Sets the digitizer triggering mode to
Internal

DigTrigSoftware ADQ14, NI
Scope

none Sets the digitizer triggering mode to
Software mode.

DisableTimer Timers channel (Timer
Channel only)

Sets the timer channel to Nan to
disable the timer.

DownTimer Timers channel (Timer
Channel only)

Sets the timer channel to Count
Down mode.

FileRestart File Reader None Resets the file data so that the next
data transmitted is the first row of
the file.

GrimmFileOff GRIMM
1p109 OPC

none Turns off the recording of an ICM
streaming data file.

GrimmFileOn GRIMM
1p109 OPC

none Turns on the recording of an ICM
streaming data file.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 190

Command Driver Parameters Description
G2401FileOff Picarro

G2401
none Turns off the recording of an ICM

streaming data file.
G2401FileOn Picarro

G2401
none Turns on the recording of an ICM

streaming data file.
HI70FileOff Vaisala

HI70
none Turns off the recording of an ICM

streaming data file.
HI70FileOn Vaisala

HI70
none Turns on the recording of an ICM

streaming data file.
HVSetAllDefaults PNG HVPS None Sets all the high voltage setpoints to

their configuration file values.
MICMFileOff MICM none Turns off the recording of an ICM

streaming data file.
MICMFileOn MICM none Turns on the recording of an ICM

streaming data file.
OmegaFileOff Omega none Turns off the recording of an ICM

streaming data file.
OmegaFileOn Omega none Turns on the recording of an ICM

streaming data file.
PrimeFileOff PrimeScale

s
none Turns off the recording of an ICM

streaming data file.
PrimeFileOn PrimeScale

s
none Turns on the recording of an ICM

streaming data file.
PauseTimer Timers channel (Timer

Channel only)
Pauses the specified timer channel.

RampTo% Chamber
Lighting

channel
(Chamber
Lighting
Channel
only),value

Sets the lighing channel to ramp to
the value specified, using the ramp
time previously stored in the
RampTime channel.

ResetCounts GAM Laser none Sets to accumulated trigger counts
to 0.

ReadDGain2 Alicat address string
or Alicat index

Reads the D gain for the Alicat at the
address and puts it into the Alicat
Gain Channel.

ReadIGain2 Alicat address string
or Alicat index

Reads the I gain for the Alicat at the
address and puts it into the Alicat
Gain Channel. Note that only some
Alicats have a I Gain.

ReadPGain2 Alicat address string
or Alicat index

Reads the P gain for the Alicat at the
address and puts it into the Alicat

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 191

Command Driver Parameters Description
Gain Channel.

ReverseTimer Timers channel (Timer
Channel only)

Changes the timer channel mode
from its current value to the other
value: e.g. count up to countdown
or down to up.

SaveConfig MICAS-XRT None This command causes the current
configuration to be saved as the
“AutoLoad” configuration, so that
MICAS-XRT will load it automatically
the next time it powers up.

ShowArray Array none This command causes a pop-up
window to appear on which one can
see the current contents of the
Array.

StartCWProfile PNG Laser
Positions

none This command is used to send a
message to the PNG Profiling Display
to start a CW Laser profile.

StartExcProfile PNG Laser
Positions

none This command is used to send a
message to the PNG Profiling Display
to start an Excmer Laser profile.

SyncTurbo Turbo V none Sets the MICAS-X values of the Turbo
V Driver to match those on the
hardware.

SyncXGS XGS none Sets the MICAS-X values of the XGS
Driver to match those on the
hardware.

TLPartDataFilter TL Filter
Wheel

None Moves the ThorLabs Filter Wheel to
the position specified by the value of
the TL Part Data Filter Channel.

TLProfileFilter TL Filter
Wheel

None Moves the ThorLabs Filer Wheel to
the position specified by the Profiling
Filter configuration parameter.

UnpauseTimer Timers channel (Timer
Channel only)

Unpauses the specified timer
channel.

UpTimer Timers channel (Timer
Channel only)

Sets the timer channel to Count Up
mode.

WriteDGain2 Alicat address string
or Alicat index,
value

Writes the value to both the Alicat
Gain Channel and to the D Gain for
the Alicat at the specified address or
index.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 192

Command Driver Parameters Description

WriteIGain2 Alicat address string
or Alicat index,
value

Writes the value to both the Alicat
Gain Channel and to the I Gain for
the Alicat at the specified address or
index.

WritePGain2 Alicat address string
or Alicat index,
value

Writes the value to both the Alicat
Gain Channel and to the P Gain for
the Alicat at the specified address or
index. Note that only some Alicats
have a I Gain.

WriteTrigY PNG Laser
Positions

numeric
(position in
um)

Writes the specified position (in um)
to the Trig Y Pos (Profile) (um)
Channel.

WriteTrigX PNG Laser
Positions

numeric
(position in
um)

Writes the specified position (in um)
to the Trig X Pos (Profile) (um)
Channel.

WriteExcY PNG Laser
Positions

numeric
(position in
um)

Writes the specified position (in um)
to the Exc Y Pos (Profile) (um)
Channel.

WriteExcX PNG Laser
Positions

numeric
(position in
um)

Writes the specified position (in um)
to the Exc X Pos (Profile) (um)
Channel.

Table B:2 - Some of the Driver-specific Commands currently available in MICAS-X.

 Note that some of the Commands documented above support customer-specific
Drivers that are not otherwise documented in this manual.

1) For “AxisNCommand” commands, the “N” is replaced by the axis number of the
desired axis use. For the NIMotion Driver, the axes are numbered beginning with 0. For
the ESP7000 and Micronix Drivers, the axes are numbered beginning with 1.

2) When reading or writing Alicat gains, the string parameter can be the Alicat Address
(A, B, C, etc., as defined in the configuration), or it can be the index of the Alicat within
the configuration. Thus a string of “0” (without quotes) would be used to specify the first
Alicat in the configuration, “1” would specify the second, etc.

15 Appendix C: User Dialogs and Notifications

 Several MICAS-X Commands are available that allow direct interaction with the
operator during sequences, triggers, and other cases. These are further described here
to assist in choosing which one is most appropriate in any situation. These Commands
include Ask, Ask(OK), Ask(Num), OpenNotifier, and CloseNotifier. In brief, these can be

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 193

used as follows: Ask presents a Yes/No dialog to the operator and returns the answer (1
or 0) to the program. Ask(OK) presents an acknowledge dialog to the operator that
returns no information to the progam. Ask(Num) presents a dialog to the operator that
allows the operator to specify a numeric value. OpenNotifier presents a notification to
the operator that returns no data to the program and does not cause the calling
sequence to wait on any response. CloseNotifier closes the notification if it is open. Note
that the dialogs/windows that these Commands invoke are Floating but not Modal, e.g.
while these dialogs are open, one can navigate throughout the MICAS-X system while
viewing and interacting with it. In addition, with the exception of the Notification, these
dialogs can also be instantiated multiple times, with each instance independent of all
the others. Note that since these are user interface commands, they are not supported
under MICAS-X-RT.

15.1.1 Alert

Parameters: Alert Code (Numeric), Text (string)

 The Alert Command can be configured to alert the operator to conditions
through a number of mechanisms. The value of the string parameter (Target) is the text
that is presented to the operator. The numeric Alert Code parameter determines how
the Alert is presented. This value is a bit-wise integer. To determine how the Alert is
presented, add together the bit values of the options that you want and set the Value to
the result. Note that if Value = 0, the default Alert mechanism is to present a dialog
window to the user with the Alert text and an acknowledge button.

Alert Code Bit Values

Bit Value Behavior

0 1 Suppress Dialog

1 2 Send Alert to Log File

2 4 Pause Sequence Until Dialog is Acknowledged

3 8 Beep

4 16 Send Alert to first Email Group

5 32 Send Alert to second Email Group

6 64 Send Alert to third Email Group

7 128 Send Alert to fourth Email Group

8 256 Say the Alert using Text to Speech

9 512 Reserved

10 1024 Reserved

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 194

11 2048 Reserved

12 4096 Play Alert1.wav

13 8192 Play Alert2.wav

14 16384 Play Alert3.wav

15 32768 Play Alert4.wav

As an example, to cause the Alert to Beep and not have an Alert Dialog, use a value of 9 (
8 (beep) + 1 (suppress dialog)).

Note that the Alert Calc tool in the Modules menu of the Configuration Editor can help
determine the value you should use for a given behavior.

Bits 4, 5, 6, and 7 require that the optional Email Instrument be installed for them to
work.

Note that the Alert text can contain current channel values by enclosing the desired
channel names between #'s. For example, if the channel "Chamber Temp (C)" has a
value of 101, then the Alert text of "Chamber Temperature too Hi. Current value =
#Chamber Temp (C)#." will result in an alert that says "Chamber Temperature too Hi.
Current value = 101."

15.1.2 Ask

Parameters: Text (string), Channel (string)

 The Ask Command presents a Yes/No dialog to the operator. The string
parameter (in the Target Channel field of the Editor) is used as the text of the dialog. The
Source Channel, which must be set by a previous SourceCh Command, determines the
Channel that the operator response is sent to. E.g. for this specific Command, the
SourceCh parameter the data Channel that receives the result of the dialog. Typically the
SourceCh parameter should refer to a Channel that is defined in the Manual Driver.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 195

Example of Ask Command user dialog.

 For example, using the text "Do you wish to continue?" and the SourceCh
"Answer", after this Command executes, the Channel "Answer" will have a value of 1 if
the user pressed the Yes button and it will have a value of 0 if the user pressed the No
button.

 This Command allows Sequences to branch according to user input, rather than
just according to programmatic Channel values. For the example above, the Command
immediately following the Ask Command could be a Goto Command, with a Condition
set for the "Answer" Channel equal to 1. Note that the Sequence which calls this
Command will not execute any further until the operator has answered the dialog. In
order to help the operator determine how quickly they responded to a dialog, the dialog
presents both the time that the dialog first opened as well as the current time.

 The Ask dialog can also be used programmatically in other MICAS-X modules as a
convenient way to return data from the operator, as has been done for several Utilities.
In this case, there are some additional options that are not available when the Ask
Command is used. To call the Ask Dialog programmatically, use the MICAS Call Ask
Dialog.vi located in the Common directory. In addition to inputs for the Channel and
Text, this VI has optional inputs that allow one to specify the text on the “Yes” button
and the “No” button, and an optional “Hide Channel?” input, which if True, makes the

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 196

“Current Value” Channel indicator invisible. Each instance of this VI creates its own
instance of the dialog, so it can be used multiple times in parallel.

15.1.3 Ask(OK)

Parameters: Text (string), Timeout (numeric)

 The Ask(OK) Command presents an OK dialog to the operator. The string
parameter (in the Target Channel field of the Editor) is used as the text of the dialog. This
Command is intended to supply the operator with information or instructions and wait
for the operator's acknowledgement, but without receiving any information back from
the operator. E.g. it can pause a Sequence until the operator has completed a manual
adjustment to the equipment, then continue the Sequence when the operator is ready.
Note that the Sequence which calls this Command will not execute any further until the
operator has answered the dialog. In order to help the operator determine how quickly
they responded to a dialog, the dialog presents both the time that the dialog first
opened as well as the current time. The optional Timeout parameter is used to specify
the maximum time that the dialog will be open. E.g. if this parameter is greater than 0,
the dialog will close even without user input after the specified number of seconds.

Example of Ask(OK) Dialog with Timeout > 0.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 197

15.1.4 Ask(Num)

Parameters: Text (string), Channel (string)

 The Ask(Num) Command presents a dialog to the operator which the operator
responds to with a numeric value. The string parameter (in the Target Channel field of
the Editor) is used as the text of the dialog. The Source Channel, which must be set by a
previous SourceCh Command, determines the Channel that the operator response is
sent to. E.g. for this specific Command, the SourceCh parameter really defines a Target
Channel.

 For example, using the text "How many iterations" and the SourceCh "Iterations",
after this Command executes, the Channel "Iterations" will have specified by the
operator before they pressed the "OK" button of the dialog.

 This Command allows Sequences to execute based on operator input at the time
of the test or Sequence, rather than just on Channel values and information the operator
had when they created the Sequence in the Editor. Note that the Sequence which calls
this Command will not execute any further until the operator has answered the dialog.
In order to help the operator determine how quickly they responded to a dialog, the
dialog presents both the time that the dialog first opened as well as the current time.

Example of Ask(Num) Dialog.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 198

15.1.5 OpenNotifier

Parameters: Text (string), Timeout (numeric)

 This Command opens the Notifier window and displays the specified text. If
timeout is not equal to 0, the window will close automatically after the absolute value of
the time-out seconds have passed. If the timeout is less than zero, a "Continue" button
is pressed that allows the user to close the dialog window before the timeout has
expired. E.g. use a positive timeout to enable a timeout with no "Continue" button, and
a negative timeout to enable a timeout with a "Continue" button. With a zero timeout,
the Notifier will only close when the Close Notifier Command is used.

 Note that the Notifier window is unique and cannot be instantiated more than
once.

Example Notifier window with positive timeout value.

15.1.6 CloseNotifier

Parameters: none

 This command closes the Notifier window. The Notifier window can also be
closed by pressing the “Continue” button (when configured to show the “Continue”
button), when its timeout expires (if configured with a non-zero timeout), or when
MICAS-X stops.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 199

16 Appendix C: Using Sequences in MICAS-X

 Although Sequences in MICAS-X are very powerful and flexible, they do have
limitations and can get confusing. This section describes some of the uses and caveates
for Sequences.

 A Sequence in MICAS-X is made up of one or more Sequence Steps. Each Step
contains five main components: the Label, the Command, the Condition, the Target, and
the Value.

 The Label of a Sequence Step serves two purposes. It is a descriptive text that
helps the sequence author understand what each step does. It can also be a Target for
the Goto Sequence Command. MICAS-X does not enforce the rule that all Labels should
be unique, but it is good practice. Labels that are used as Targets for Goto Commands
should definitely be unique within that Sequence, so that one can be sure where the
Goto refers to. Note that Labels have a scope limited to the Sequence that they are in.
E.g. duplicate Labels in different Sequences are not a problem.

 The Command defines the action that a Sequence Step will take, though this
action is only taken if the Step's Condition is evaluated as True. The Commands that are
available within Sequences include all MICAS-X Commands. This includes all the
standard Commands listed in Table B:1 as well as any Driver-specific Commands for
Drivers that have been included in the active configuration, as shown in Table B:2. Also
note that the last few Commands in Table B:1 are specific to Sequences and cannot be
used in Triggers, Alarms, or other places where Commands are used.

 The Condition for a Step is defined by the Condition parameter as well as the
Condition Channel and the Threshold. The Condition is evaluated by comparing the
value of the Condition Channel to the Threshold, using the Condition parameter. The
Condition Parameter has the options True, < (less than), <= (less than or equal), =
(equal), <> (not equal), >= (greater than or equal), > (greater than), =NaN (equal to Not-
A-Number), <>NaN (not equal to Not-A-Number), <>Nan,0 (not equal to Not-A-Number
or Zero), and False. As of version 2.0.3 of MICAS-X, additional conditions have been
added which allow the Condition Channel to be compared to another channel (the
Condition Source Channel), rather than just to a constant. These conditions include <Ch
(less than the Condition Source Channel), <=Ch (less than or equal to the Condition
Source Channel), =Ch (equal to the Condition Source Channel), <>Ch (not equal to the
Condition Source Channel), >-=Ch (greater than or equal to the Condition Source
Channel), and >Ch (greater than the Condition Source Channel). If one of these latter
Conditions are used, it is imperative that the Condition Source Channel be previously
defined using the CondSource Command.

 The True Condition is the most commonly used. It means that the Sequence Step
will always execute when a Sequence reaches it. The False Condition is much less
frequently used, since it means the Step will never execute. The False Condition can be

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 200

useful for “commenting out” Sequence Steps in the Configuration Editor, but not
removing them completely, so that they can easily be added back to the Sequence in the
future.

 The <, <=, >, >=, =, and <> Conditions use their standard definitions. Note that =
and <> do not have a “delta” parameter in Sequences, in contrast to the “Hysteresis”
parameter for Triggers. For Triggers, the “Hysteresis” parameter is used as a bandwidth,
so that = and <> can be used for “Nearly Equal” and “Out Of Range”.

 NaN is a IEEE-defined value meaning “Not-A-Number”. It is used in MICAS-X by
many Drivers to indicate that a value could not be read from the related hardware for
some reason. Within the IEEE definition, any normal comparison of any number
(including NaN) with a value of NaN will result in False. Thus if the following condition
were evaluated:
Condition: = Condition Channel: Counts Threshold: NaN

while the channel Counts had the value “NaN”, the answer would be (rather
nonintuitively), False. In order to allow Conditions that can specifically identify NaN, the
Conditions =NaN, <>NaN, and <>NaN,0 are available. These Conditions can be useful
when writing Sequence Steps that need to be able to recognize when a Driver is
working, e.g. when it's channel's value is not NaN.

 Commands in MICAS-X were initially defined as having a Command (string), an
optional Target (string), and an optional value (real). Later, some commands were
defined that include a Source (string) as well, so that, for example, two channels can be
added together. E.g. the AddChToCh Command adds the value of the Source Channel to
the Target Channel and puts the result in the Target Channel. The Sequence Editor
cannot directly accommodate the Source Channel, so the special Sequence Command
“SourceCh” was added. Whenever a Command which requires a Source Channel is to be
used, it should be immediately preceeded by the “SourceCh” Command, so that the
Sequencer knows what Channel to use as the Source Channel. If the same Source
Channel will be used repeatedly and exclusively within a Sequence, it is OK to set that
Source Channel once at the beginning of the Sequence with the SourceCh Command
and not set it again. Although this practice works, it makes the Sequence less readable,
and is prone to bugs if another Source Channel is later added at some point in the
Sequence.

 Just as the lack of a Source Channel was problematic with Commands, previous
to version 2.0.3, the Sequence Conditions also suffered from a limitation due to the fact
that only one Condition Channel could be defined. Many Conditions can be defined in
terms of one variable, such as terminating a Sequence loop when a Count channel
exceeds a value. However, it is often the case that it is useful to have a Condition that
compares the values of two channels. E.g. the Sequence might execute a Step if the
ProcessTemp Channel is greater than the TempSetPoint Channel. Since each Sequence

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 201

Step only refers to a single Condition Channel, this is problematic. The previously
suggested solution (which still works) was to create a new channel using the Equations
Driver, such that the value of the new Channel is the difference of the two Channels in
question. E.g. an Equation Channel named TempDifference could be defined as
(ProcessTemp - TempSetPoint). Then the Condition could be applied to the
TempDifference Channel with the Condition of “>” and a threshold of 0.

 With the introduction of Condition Source Channels in MICAS-X 2.0.3, the above
example can be addressed in an even easier and cleaner fashion. Before the Sequence
Step that includes the condition in question, use the CondSource Command to set the
Condition Source Channel to TempSetPoint. The Step in question would then use the
Condition >Ch to compare the ProcesTemp Channel value to the TempSetPoint Channel
value, and the TempDifference Channel would not have to be created at all.

 When writing Sequences, it is important to consider how and when the various
Channels are being acquired or calculated. In the example above, using the
TempDifference Channel, it would be wise to ensure that the Equations Driver is in the
same acquisition loop as the other two channels and that it is listed after the Drivers
that contain the other two Channels. That way, the value of the TempDifference Channel
will always be calculated using the current values of the other two Channels. If the
Equations Driver were listed before the Drivers containing the other two Channels, it
would use the previous iteration's values of those Channels to compute the value of
TempDifference, with the result that the TempDifference Channel will always be one
iteration out-of-date.

 Another consideration when using Sequences is important when creating
Sequences for stimulus-response type situations. For example, imagine a Sequence that
moves a sensor over a raster pattern, and reads the value of the sensor at each position.
At a high logic level, the Sequence would look something like:

 Move to a new position

 Read sensor

 Check if all positions have not been done, loop back to Move (1)

 Stop sequence

 In implementing this Sequence, it is important to consider the timing of the
system. Sequences and Driver are asynchronous in MICAS-X, so additional logic needs to
be included in order to ensure that the above sequence operates correctly. For example,
one might want to ensure that the sensor has finished moving and that the sensor
channel value has updated before moving to the next location. This might be
accomplished by a sequence such as this:

1. Move to a new position

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 202

2. Wait 1.1 seconds (to ensure that the move started)

3. Check if move is not done, loop back to Wait (2)

4. Check if sensor channel does not have a new value, loop back to 4

5. Check if all positions have not been done, loop back to Move (1)

6. Stop sequence

 In this example, the time to wait in Step 2 depends on the hardware in use and
the configuration of the Driver controlling the motion. Note that when MICAS-X sets a
channel to a new channel value or executes a Driver Command, those actions act
immediately and are not synchronized to the Acquisition Loop. Hence the Move
Command (1) will execute very soon (milliseconds) after the Sequence issues it.
However, to read from the motion Driver whether the motion is completed or not, one
needs to be sure that the Sequence waits long enough that the Channel indicating
whether or not the hardware is moving has been updated by the Driver. If the motion
Driver is in a 1 Hz acquisition loop, a wait of 1.1 seconds should be sufficient to ensure
that the move started AND the motion Driver has updated its channels.

 Step for of the above Sequence could be implemented with the Wait(NewValue)
command. This command takes a Channel and a wait time as arguments, and will check
the channel for a new value, waiting by the wait time between each check. A relatively
short time, such as 0.1 seconds, can be used for this command, reducing the latency of
this wait. Note, however, that this Command assumes that the Channel being monitored
WILL change. If the Channel being monitored has no appreciable noise or is not
guaranteed to change, this Wait(NewValue) Command could hang indefinitely.

 Finally, note that in the above example, the Wait(NewValue) was not suggested
for Step 2. Instead, a longer Wait(Value) Command was used. This is due to the nature of
motion control. For example, before the Command to move to a new position was
entered, the motion system was likely at rest, and the motion Driver's “Done?” Channel
was likely returning a value indicating that all motion was complete. (For this example,
assume that Done? = 1 means that the motion hardware is stationary.) If the
Wait(NewValue) Command had been issued immediately after the Move command, it
may well have triggered on the Done? = 1 to Done? = 0 transition, when the motion
hardware first starts to move, which would not be appropriate. A fixed Wait is therefore
needed to ensure that the motion was started before the Check was made.

 Note that Sequences are one of the few things in MICAS-X that can be changed
while MICAS-X is running. For almost all other parameters, you must edit the
configuration file and restart MICAS-X for changes to be made. Sequences, however, can
be added to the MICAS-X configuration while the program is running. This is done by
editing the current configuration file in the Configuration Editor, and pressing the Add to

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 203

Current Configuration button after highlighting the desired Sequence in the Sequences
list on the left side of the Sequences Editor.

 As of version 2.1.4 of MICAS-X, Scripts (Section 7.4.8) are also available. Scripts
are a more powerful form of Sequences. They are executed in MICAS-X by the Sequence
Module. Unlike Sequences, the Scripts themselves are not stored in the configuration
file, but are stored in the Scripts sub-directory of the Support directory.

 Scripts are stored as text and can be edited in a text editor or using Utilities
created for editing them. Their format is similar to Sequences, and is documented in the
above referenced section. The same Commands and parameters that are used in
Sequences can be used in Scripts. In addition, the Script lines can have a Comment
parameter, which is used only for documentation.

 The main differences between Scripts and Sequences are that 1)Scripts can
contain an Expression in any location that normally takes a Value, and 2)a single Script
line can only contain one command, but it can contain multiple sets of parameters for
that command to operate on. Because of these two differences, Scripts can be more
compact and easier to understand than Sequences. With Sequences, if one wants to
compare two Channel values in a Condition, one must first use the CondSource
command to set the second (Source) Condition Channel, then use one of the Conditions
that uses a second Channel. Alternatively, additional an additional Channel can be
created with the Equations Driver which takes the difference of two channels, and that
new Channel can be used in the Condition. With Scripts, neither of these extra steps is
necessary.

17 Appendix D: Syntax for Equations

The Equations Driver allows users to create and calculate their own channels by
writing text equations involving existing channels. Scripts also allow the use of
Expressions as defined in this section. The table below describes the syntax for the
available functions that can be used for these equations. In addition to the syntax
supportted below by National Instruments, as of version 2.0.0, the MICAS-X Equations
Driver also supports a number of customer functions. Those custom functions are
described in the second table below.

Function Syntax
Function Name

Description

abs(x) Absolute Value Returns the absolute value of x. abs(x) Absolute Value Computes the absolute value of x.

acos(x) Inverse Cosine Computes the inverse cosine of x.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 204

Function Syntax
Function Name

Description

acosh(x) Inverse Hyperbolic Cosine
Computes the inverse hyperbolic cosine of x
in radians.

asin(x)
Inverse Sine

Computes the inverse sine of x in radians.

asinh(x) Inverse Hyperbolic Sine
Computes the inverse hyperbolic sine of x in
radians.

atan(x) Inverse Tangent
Computes the inverse tangent of x in
radians.

atanh(x)

Inverse Hyperbolic
Tangent

Computes the inverse hyperbolic tangent of
x in radians.

ci(x)
Cosine Integral

Computes the cosine integral of x where x is
any real number.

ceil(x) Round to +Infinity
Rounds x to the next higher integer (smallest
integer >= x.)

cos(x) Cosine Computes the cosine of x in radians.

cosh(x) Hyperbolic Cosine
Computes the hyperbolic cosine of x in
radians.

cot(x) Cotangent
Computes the cotangent of x in radians
(1/tan(x)).

csc(x) Cosecant
Computes the cosecant of x in radians
(1/sin(x)).

exp(x) Exponential
Computes the value of e raised to the power
x.

expm1(x) Exponential(Arg)—1
Computes the value of e raised to the power

of x— 1 (ex – 1).

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 205

Function Syntax
Function Name

Description

floor(x) Round to —Infinity
Truncates x to the next lower integer
(Largest integer <= x)

gamma(x) Gamma Function Г(n + 1) = n! for all natural numbers n.

getexp(x)

Mantissa and exponent

Returns the exponent of x.

getman(x)
Mantissa and exponent

Returns the mantissa of x.

int(x) Round to nearest integer
Rounds its argument to the nearest even
integer.

intrz Round toward zero
Rounds x to the nearest integer between x
and zero.

ln(x) Natural Logarithm
Computes the natural logarithm of x (to the
base e).

Inpl(x)
Natural Logarithm (Arg+1)

Computes the natural logarithm of (x+1).

log(x)
Logarithm Base 10

Computes the logarithm of x (to the base
10).

log2(x)
Logarithm Base 2

Computes the logarithm of x (to the base 2).

pi(x)
Represents the value π =
3.14159

pi(x) = x * π pi(1)= π pi(2.4) = 2.4* π

rand(0)
Random Number (0—1)

Produces a floating-point number between 0
and 1.

sec(x) Secant Computes the secant of x (1/cos(x)).

si(x) Sine Integral
Computes the sine integral of x where x is
any real number.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 206

Function Syntax
Function Name

Description

sign(x) Sign
Returns 1 if x is greater than 0. Returns 0 if x
is equal to 0. Returns -1 if x is less than 0.

sin(x) Sine Computes the sine of x in radians.

sinc(x) Sinc
Computes the sine of x divided by x in
radians (sin(x)/x).

sinh(x) Hyperbolic Sine Computes the hyperbolic sine of x in radians.

spike(x) Spike function
Returns: 1 if 0 <= x <= 1, 0 for any other
value of x.

sqrt(x) Square Root Computes the square root of x.

square(x) square(x)
square (x) returns: 1 if 2n <= x <= (2n +1), 0 if
2n + 1 <= x <= (2n +2) where x is any real
number and n is any integer.

step(x) Step function
step(x) returns: 0 if x < 0, 1 if any other
condition applies.

tan(x) Tangent Computes the tangent of x in radians.

tanh(x) Hyperbolic Tangent
Computes the hyperbolic tangent of x in
radians.

The above table is excerpted from the G Math Toolkit Reference Manual produced by National
Instruments. A complete version is available online.

 The functions built in to the G Math Toolkit take a single value as an argument.
Many of custom functions added to the Equation Driver by OCC may take an arbitrary
number of channel names or constant values as arguments and act on all the values.
Other custom functions operate on the channels as if they were Boolean values
(True/False, where 0 or NaN = False and all other values (most typically 1) are True). The
main advantage of using these Boolean operations is that they all specifically filter NaN
out to be 0 or False, whereas simple math (such as using multiply for AND or add for OR)
would generally treat NaN as True.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 207

 Note that the custom function added by OCC are not computed recursively! E.g.
only simple expressions can be used with these functions, not nested expressions. For
example:
And(channel1,channel2,channel3) is allowed.

Not(Or(And(Channel1,Channel2),Channel3) is not allowed.

Funtion Syntax Function Name Description
Max(x,y,z...) Maximum Value Returns the largest of the values that are

passed in as arguments.
Median(x,y,z...) Median Value Returns the median of the values that are

passed in as arguments.
Min(x,y,z...) Minimum Value Returns the smallest of the values that are

passed in as arguments.
Rate(x,i,n) Rate of change of a

channel's value
Calculates a linear fit over the last n points
of the channel x and returns the slope.
Note that time is implicit and is whatever
time interval is used to acquire new points
and calculate the rate. (It is best to keep
the Equation Driver in the same loop as the
channel for which the Rate is calculated.)
The index i must be a unique integer >= 0
for each equation that uses this function.

Bool(x) Converts to Boolean
(0 or Nan = False, 0;
anything else = True,1)

This function takes a single channel as an
argument. The main advantage of this
function is that it converts NaN to 0,
whereas a channel used as a Boolean
otherwise would take NaN as True.

Not(x) Converts the Negated
Boolean value (0 or Nan =
True, 1; anything else =
False, 0)

Similar to Bool, but logically negated.

And(x,y,z…) AND’s all the channels Takes any number of channels, converts
them all to Boolean (including using NaN’s
as False) and computes a value of 0 or 1
based on AND’ing the channels. The result
is 1 if all of the channels are True (e.g. not
0 and not NaN).

Or(x,y,z…) OR’s all the channels Takes any number of channels, converts
them all to Boolean (including using NaN’s
as False) and computes a value of 0 or 1
based on OR’ing the channels. The result is

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 208

1 if any one of the channels is True (e.g.
not 0 and not NaN).

Nand(x,y,z…) NAND’s all the channels Same as And, but negated result.

Nor(x,yz…) NOR’s all the channels Same as Or, but negated result.

Xor(x,y) Exclusive Or of two
channels

The output is 1 if either of the channels is
True, but not both.

Nxor(x,y) Negated Exclusive Or of
two channels

The output is 1 if both channels are False
or both channels are True.

ReplaceNaN(x) Replaces channel values of
NaN with x

See notes below.

Custom functions added to the Equations Driver in MICAS-X.

 Note that the values Inf, -Inf, and NaN are not supported by the G Math Toolkit.
If any input channels have these values, the output of the equation will be set to NaN.

 Note, however, that the ReplaceNaN(x) custom function can be used in some
situations to deal with NaN values. This function takes a numeric argument, not a
channel name, and replaces the value of any channels in the equation that currently
have a value of NaN with that numeric value. One use of this channel is when dealing
with Boolean-like channels, which are intended to have a value of 0 or 1. These channels
may be added or multiplied together to create OR- and AND-type functions. However, if
a Driver is disabled, its channels return the value NaN. In this case, an equation adding
or multiplying multiple channels will result in a NaN value, which may not be the desired
behavior. By using the ReplaceNaN(x) function, NaN can be mapped directly into either a
0 or a 1, depending on the desired behavior.

18 Appendix E: Error Messages

 Error codes reported in MICAS-X are generally those defined in LabVIEW. There
are a few error codes, however, that were created specifically for the MICAS-X system.
These error codes range from 7001 to 7999 and are documented here:

Error Code Meaning
7001 Channel or name not found.
7002 Requested channel is not an output channel.
7003 Auto-Threshold algorithm returned a value of 0. Old threshold was used.

(Specific to the SP2 Instrument.)
7004 Channel name is empty. Cannot set unknown channel.
7006 Auto Sampler error: Illegal or missing perameter. (Specific to the SP2

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 209

Instrument with Autosampler.)
7007 Auto Sample error: (Specific to the SP2 Instrument with AutoSampler)
7008 Unknown command.
7009 Function not yet implemented.
7010 Security Device not found. Cannot execute command.
7011 Requested List not found.
7012 The requested Command cannot act on the Requested Channel.
7013 Checksum Invalid.
7014 Turbo V communication error.
7015 No Security Device Detected.
7016 No Security Device detected. Now in unlicensed mode.
7017 Resource was not registered correctly.
7018 An XGS gauge set to Auto-On cannot be turned off or on. That must be

done on the XGS hardware control panel.
7019 Cannot turn the GAM Excimer on until the warm-up time has expired.
7020 Security Device expiration date has passed.
7021 Security Device expiration date has passed. Now in unlicensed mode.
7022 Lost TCP connection.
7023 Incorrect number of controllers sent to UWyo UF RT.vi. (This error is

specific to the UWyo UF Driver.)
7024 Programming error. Please contact Original Code Consulting.
7025 The Array is not configured to allow itself to grow beyond its initial size.

(This error occurs if “Allow Array to Grow” is not checked and the array is
written to with an index greater than or equal to the initial array size.)

7026 Tab Command cannot be used for a Tab which is not visible.
7027 Email could not be sent. Check your email configuration.
7028 The requested Sequence cannot be started since it is already running.
7029 The requested Sequence cannot be stopped since it is not running.
7030 The requested Sequence cannot be paused since it is not running.
7031 The requested Sequence cannot be paused since it is already paused.
7032 The requested Sequence cannot be unpaused since it is not paused.
7033 Configuration File CRC is not valid or missing.
7034 Backup Configuration File has been defined as the Startup Configuration

file due to CRC failure.
7035 Cannot Set a channel when Acquire is False.
7036 Cannot execute a Command when Acquire is False.
7037 Cannot find the Driver requested.

7038 Command buffer is growing. Commands are not getting processed
properly. This can be caused by Acquisition Loops not having enough
time to complete their tasks.

7039 The configuration file being loaded in MICAS-X for Windows is marked as

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 210

being targeted to MICAS-X-RT for Real-Time. Functionality may be
impaired.

7040 The configuration file being loaded in MICAS-X-RT for Real-Time is
marked as being targeted to MICAS-X for Windows. Functionality may be
impaired.

7041 The requested Command is not supported in MICAS-X-RT.

7042 Not all the Drivers were initialized before other modules started. Some
functions may have failed. Report this error to OCC for support.

7043 Cannot set a PID Gain when the Mode is 0 (Manual) or -1 (Disabled).

7044 Cannot set the Thermo 49C PS SetPoint below 5 ppb.

7045 Error setting the Thermo 49C PS SetPoint.

7046 Could not parse the Script Condition.

7047 Command queue was overflowing. Cleared the Command queue of over
1000 unprocessed commands.

7048 Sequencer did not initialize in time. Sequences may not have loaded
properly.

7049 Look Up Table not found.

7050 Adobe Acrobat must be properly installed on this computer in order to
view .pdf files in the Document Display.

7051 Cannot set a Channel on the RT system. Connection may have been lost.

7052 Obis Laser Error.

7053 Device not found. The serial number searched for was not reported as
available.

7054 Error arming the ADQ.

7055 ADQ error.

7056 Time-out expired before stage stopped moving.

7057 Micronix Error.

7058 Time-out expired before N laser measurements could be made.

7059 Time-out expired before a new Excimer Joulemeter measurement was
made.

7060 Did not get both NI Scope signals before time-out.

7061 Laser cannot be turned on before the warm-up is finished.

7062 Invalid data read from HVPS. No Beacon character detected.

7063 Time-out expired before instrument reply was complete.

7064 Measured laser position offset was larger than the maximum adjustment
allowed. Laser position will not be moved.

7065 Filter wheel was moved to a position which does not have a defined filter
value.

7066 High Voltage could not be enabled due to software interlock condition.

7067 Invalid Filter Position was commanded. Coercing to a valid position.

mailto:dthomson@originalcode.com

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 211

7068 Cannot set the Obis laser diode temperature outside the specified range.

7069 Pololu Driver setpoing channel cannot be set higher then n-1, where n is
the number of positions.

7070 K535 Driver cannot have cooling and regeneration turned on at the same
time.

7071 Acqiris Instrument did not receive particle speed data from ATOFMS
timing Instrument before the time-out expired.

7072 User selected O2 concentration is less than envirnomental O2. Cannot set
flow controller less than 0.

7073 User selected CO2 concentration is less than envirnomental CO2. Cannot
set flow controller less than 0.

7074 Error reading from MKS flow controller.

7075 Acquisition Loop took more than three times its configured Loop Time to
execute.

7076 The ADQ14 cannot change its Acquire state when it is not Enabled. Use
the ADQ14 Driver to Enable the ADQ14 Instrument before chaging its
Acquire state.

7077 SingleStepSeq Command cannot operate on a Sequence that is not
running and paused.

7078 Wait For Different Value timed-out. Actions may be taken before they
were intended to.

7079 Wait For New Value timed-out. Actions may be taken before they were
intended to.

19 Appendix F: Web Power Switch 7 Watchdog Function

 MICAS-X can enable a watchdog function using the Web Power Switch 7. This
creates a safety mechanism that can shut down the AC power to a device in the case
that MICAS-X or the computer that it is on should crash or stop running unexpectedly. In
order for this functionality to work, it is necessary to enable the watchdog function in
the Web Power Switch 7 Driver configuration, as well as to configure several scripts on
the Web Power Switch 7 itself. The required scripts are documented here. In addition to
configuring the scripts below on the Web Power Switch 7, the Enable Watchdog
parameter must also be set True in the Web Power Switch MICAS-X configuration.

 To program the scripts, one must open the Web Power Switch 7 (WPS7) interface
from a web browser. To do this, enter the IP address of the WPS7 in the web browser
address bar. For example, if the IP address of the device is 192.168.1.100, enter
“http://192.168.1.100” in the address bar of your web browser. Click on the Scripting
link on the left of the resulting page.

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 212

 On the Scripting page, you will need to enter two User Strings and several lines of
Scripts, as shown below. Enter each item one at a time, then press the associated Edit
button. Note that the Script items cannot be edited if the “Enable Scripting” check box
is set. If the “Enable Scripting” check box is marked, first uncheck it and press “Submit”.
After editing all User Strings and Scripts, you must check the “Enable Scripting” button
and press “Submit” again before the scripts are ready to run on the WPS7.

 The directions below assume that Plug or Outlet 1 is being guarded by the
Watchdog scripts. You can customize the scripts to act on any of the plugs as desired.

 Under “User Strings”, enter “\f\1REFRESH %O\2%d” without the quotes, and
press “Edit”. The \1 and \2 tokens instruct the WPS7 to write to the first and second
lines of its display. %O causes it to display the current state of the eight outlets, and %d
causes it to display the current date and time.

 For the second “User String”, enter “\f\1P1 OFF %O\2%d” without the quotes,
and press “Edit”. In this case, the text “P1 OFF” is displayed to indicate that plug 1 is
being turned off. If you wish to guard a different plug(s) with the watchdog script, you
can replace that text with other descriptive text as desired. However, it is best to limit
this text to exactly seven characters, using spaces as necessary.

 For Script Line 10, enter “KILL 0” (without quotes) and press “Edit”. This script
stops all other scripts. MICAS-X calls this script when it stops, so that the Watchdog
functionality ends when MICAS-X stops. If this is not done, the guarded outlet(s) will be
turned off shortly after MICAS-X stops running. If that is the desired behavior, leave line
10 with the default “End” entry.

 For Script Line 20, enter “KILL 0”.

 For Script Line 21, enter “DISPLAY 1”

 For Script Line 22, enter “GOTO 30”

 These three script lines are called by MICAS-X once per acquisition loop. This
refreshes the Watchdog function and keeps the guarded plug(s) turned on (if they are
already on). Note that the Watchdog functionality does not turn ever turn the guarded
plug(s) on. That must be done by the user manually at the WPS7, or from within MICAS-
X.

 For Script Line 30, enter “SLEEP 15”.

 For Script Line 31, enter “OFF 1”

 For Script Line 32, enter “DISPLAY 2”

 These three script lines are responsible for shutting the guarded plug(s) off if
MICAS-X does not refresh the watchdog. Line 30 waits for 15 seconds. Note that this
value can be adjusted as desired. This value should be 1.5 to 2 times longer than the

 © 2020 David Thomson, Original Code Consulting, support@originalcode.com 213

MICAS-X WPS7 Acquisition Loop time. If this value is shorter than the acquisition loop
time, the scripts will turn off the plug(s) prematurely.

 Line 31 turns off the guarded plug(s). Therefore, the value “1” should be
changed to reflect which plugs you wish to have the watchdog guard. The plugs are
numbered 1 to 8, and multiple plugs are specified by stringing their numbers together.
Thus “OFF 135” will turn off plugs 1, 3, and 5, and “12345678” will turn off all the plugs.

 Line 32 displays the second user string. This provides visual confirmation to the
user that the watchdog functionality was activated.

